Différences

Ci-dessous, les différences entre deux révisions de la page.

Lien vers cette vue comparative

Les deux révisions précédentes Révision précédente
Prochaine révision
Révision précédente
Prochaine révision Les deux révisions suivantes
formation:gpu4cbp [2023/03/10 12:10]
equemene [Comparaison de toutes les implémentations : victoire incontestée de OpenCL]
formation:gpu4cbp [2023/03/13 08:54]
equemene [Implémenter une fonction coûteuse, la Transformée de Fourier]
Ligne 741: Ligne 741:
   - la OpenACC reste supérieure aux implémentations OpenCL/CPU et OpenCL/GPU d'un facteur 3   - la OpenACC reste supérieure aux implémentations OpenCL/CPU et OpenCL/GPU d'un facteur 3
  
-Se contenter uniquement de ce test inviterait à fuire Python/​OpenCL. Cependant, nous avons vu dans sur ''​MySteps_2.py''​ que la charge calculatoire doit être "vraiement" significative pour que le Python/​OpenCL l'​emporte de manière significative. Nous reviendrons donc dans la suite sur des versions modifiées de ces programmes C intégrant la fonction de Mylq ''​MySillyFunction'',​ appelée plusieurs fois, pour juger si "​vraiment" ​Python/​OpenCL reste compétitif face à OpenMP et OpenACC.+Se contenter uniquement de ce test inviterait à fuire Python/​OpenCL. Cependant, nous avons vu dans sur ''​MySteps_2.py''​ que la charge calculatoire doit être "vraiment" significative pour que le Python/​OpenCL l'​emporte de manière significative. Nous reviendrons donc dans la suite sur des versions modifiées de ces programmes C intégrant la fonction de Mylq ''​MySillyFunction'',​ appelée plusieurs fois, pour juger si Python/​OpenCL reste compétitif face à OpenMP et OpenACC.
 ===== Un intermède CUDA et son implémentation PyCUDA ===== ===== Un intermède CUDA et son implémentation PyCUDA =====
  
Ligne 994: Ligne 994:
   * Python/​OpenCL/​CPU est presque 3x plus rapide que la C/OpenMP, 23x plus rapide que le Python Numpy   * Python/​OpenCL/​CPU est presque 3x plus rapide que la C/OpenMP, 23x plus rapide que le Python Numpy
  
-Si nous augmentons la charge individuelle de chaque addition, nous augmentons de manière très significative l'​accéleration de calcul via OpenCL. Pour la configuration ci-dessus, l'​accélération frise avec les 1850 pour le GPU et les 43 pour le CPU, en sollicitant 1000 fois la fonction de Mylq (soit 32001 opérations pour chaque somme).+Si nous augmentons la charge individuelle de chaque addition, nous augmentons de manière très significative l'​accéleration de calcul via OpenCL. Pour la configuration ​matérielle ​ci-dessus, l'​accélération frise avec les 1000 pour le GPU et les 23 pour le CPU, en sollicitant 1000 fois la fonction de Mylq (soit 32001 opérations pour chaque somme). 
 + 
 +Le tableau suivant montre, pour les 7 implémentations,​ le gain face à l'​implémentation native Python : 
 +^  Silly Calls  ^  C/​Serial ​ ^  C/​OpenMP ​ ^  C/​OpenACC ​ ^  PyCL CPU  ^  PyCL GPU  ^  PyCUDA 32T  ^ 
 +^  0|  3.89|  9.39|  1.45|  0.82|  0.60|  0.57| 
 +^  1|  0.40|  4.82|  12.95| ​ 15.40| ​ 56.43| ​ 46.08| 
 +^  10|  0.46|  4.69|  15.96| ​ 20.30| ​ 393.72| ​ 190.89| 
 +^  100|  0.54|  5.18|  17.97| ​ 23.24| ​ 904.59| ​ 294.82| 
 +^  1000|  0.52|  5.10|  17.30| ​ 22.40| ​ 967.09| ​ 290.60| 
 + 
 +Pour obtenir de tels gains, nous avons la conjonction des 2 facteurs : l'​exploitation massive de tous les //​cudacores//​ (les ALU de la GPU) et l'​utilisation de toute la bande passante mémoire de la GPU (10x supérieure généralement à la bande passante mémoire). 
 + 
 +L'​objectif de cette partie TP est donc de retrouver, par soi-même, les facteurs d'​accélération de OpenCL pour des charges croissantes par l'​application de 0, 1, 10, 100, 1000 fois la fonction de Mylq. 
 + 
 +La difficulté viendra du temps d'​exécution de la version séquentielle qui atteint son pallier de performances pour une taille croissante de vecteurs assez rapidement et du choix judicieux de l'​inhibition de l'​exécution séquentielle pour permettre d'​atteindre des tailles de vecteurs significatives. 
 + 
 +<note warning>​**Exercice #4.1 : exécution des différentes implémentations** 
 +  - Compilez ''​MySteps_6.c''​ en ''​MySteps_6''​ 
 +  - Compilez ''​MySteps_6_openmp.c''​ en ''​MySteps_6_openmp''​  
 +  - Compilez ''​MySteps_6_openacc.c''​ en ''​MySteps_6_openacc''​ 
 +  - Compilez ''​MySteps_6_openmp.c''​ en ''​MySteps_6_openmp_NoSerial'',​ sans exécution séquentielle  
 +  - Compilez ''​MySteps_6_openacc.c''​ en ''​MySteps_6_openacc_NoSerial'',​ sans exécution séquentielle 
 +  - Exécutez ''​MySteps_6''​ sur des tailles de 32768 et 65536, pour les différentes charges ci-dessus 
 +  - Relevez les **NativeRate** pour les différentes charges : que constatez vous ? 
 +  - Exécutez ''​MySteps_6_openmp''​ sur des tailles de 32768 et 65536, pour les mêmes charges 
 +  - Relevez les **NativeRate**,​ **OMPRate** pour les différentes charges 
 +  - Exécutez ''​MySteps_6_openacc''​ sur des tailles de 32768 et 65536, pour les mêmes charges 
 +  - Relevez les **NativeRate**,​ **ACCRate** pour les différentes charges 
 +  - Exécutez ''​MySteps_6.py''​ en OpenCL/CPU avec l'​Intel sur des tailles de 32768 et 65536 
 +  - Relevez les **NativeRate**,​ **OpenCLRate** pour les différentes charges 
 +  - Exécutez ''​MySteps_6.py''​ en OpenCL/GPU sur le plus gros GPU sur des tailles de 32768 et 65536 
 +  - Relevez les **NativeRate**,​ **OpenCLRate** pour les différentes charges 
 +  - Exécutez ''​MySteps_6.py''​ en CUDA/GPU sur le plus gros GPU sur des tailles de 32768 et 65536 
 +  - Relevez les **NativeRate**,​ **CUDARate** pour les différentes charges  
 +  - Placez dans un tableau les différentes valeurs : que constatez-vous ? 
 +  - Exécutez ''​MySteps_6_openmp_NoSerial''​ sur des tailles de 1048576 et 2097152, pour les mêmes charges 
 +  - Relevez **OMPRate** pour les différentes charges 
 +  - Exécutez ''​MySteps_6_openacc_NoSerial''​ sur des tailles de 1048576 et 2097152, pour les mêmes charges 
 +  - Relevez **ACCRate** pour les différentes charges 
 +  - Exécutez ''​MySteps_6.py''​ en OpenCL Intel sur des tailles de 1048576 et 2097152, avec l'​option ''​-n''​ 
 +  - Relevez **OpenCLRate** pour les différentes charges 
 +  - Exécutez ''​MySteps_6.py''​ en OpenCL sur le même GPU sur des tailles de 1048576 et 2097152 
 +  - Relevez **OpenCLRate** pour les différentes charges 
 +  - Exécutez ''​MySteps_6.py''​ en CUDA/GPU sur le même GPU sur des tailles de 1048576 et 2097152 
 +  - Relevez **CUDARate** pour les différentes charges  
 +  - Placez dans un tableau les différentes valeurs : que constatez-vous comme gain en performance en OpenCL ? 
 +</​note>​ 
 + 
 +Vous pouvez juger, du fait de lancement pour des tailles doublées, et pour les différentes charges, que vous avez obtenu des optimums pour certaines implémentations,​ mais pas encore pour d'​autres,​ notamment OpenCL et CUDA.  
 + 
 +Si la performance pour une taille de 2097152 est moins de 5% supérieure à la performance pour une taille de 1048576, vous pouvez considérer que vous avez atteint le quasi-optimum de performance. L'​objectif est d'​atteindre cette limite. 
 + 
 +<note warning>​**Exercice #4.2 : exploration de la meilleure performance OpenCL et CUDA** 
 +  - Exécutez ''​MySteps_6.py''​ en OpenCL Intel sur des tailles croissantes avec l'​option ''​-n''​ 
 +  - Relevez **OpenCLRate** pour les différentes charges 
 +  - Exécutez ''​MySteps_6.py''​ en OpenCL sur le même GPU sur des tailles de 1048576 et 2097152 
 +  - Relevez **OpenCLRate** pour les différentes charges 
 +  - Exécutez ''​MySteps_6.py''​ en CUDA/GPU sur le même GPU sur des tailles de 1048576 et 2097152 
 +  - Relevez **CUDARate** pour les différentes charges  
 +  - Placez dans un tableau les différentes valeurs : que constatez-vous comme gain en performance en OpenCL ? 
 +</​note>​ 
  
-Pour obtenir de tels gains, nous avons la conjonction de 2 facteurs : l'​exploitation massive de tous les //​cudacores//​ donc les ALU du GPU et l'​utilisation de toute la bande passante mémoire. ​ 
 ===== Implémenter une fonction "​coûteuse",​ la Transformée de Fourier ===== ===== Implémenter une fonction "​coûteuse",​ la Transformée de Fourier =====
  
Ligne 1031: Ligne 1091:
 Il sera alors possible d'​estimer l'​erreur numérique à ce calcul. Il sera alors possible d'​estimer l'​erreur numérique à ce calcul.
  
-<note warning>​**Exercice #4.1 : implémentation Python "​naïve"​**+<note warning>​**Exercice #5.1 : implémentation Python "​naïve"​**
   - Modifiez ''​MyDFT_1.py''​ suivant les 7 spécifications ci-dessus   - Modifiez ''​MyDFT_1.py''​ suivant les 7 spécifications ci-dessus
   - Exécutez le programme pour une taille de **16** et contrôler la cohérence   - Exécutez le programme pour une taille de **16** et contrôler la cohérence
Ligne 1064: Ligne 1124:
   - comparer les résultats entre les deux avec ''​linalg.norm''​   - comparer les résultats entre les deux avec ''​linalg.norm''​
  
-<note warning>​**Exercice #4.2 : implémentation Python Numpy**+<note warning>​**Exercice #5.2 : implémentation Python Numpy**
   - Copiez le programme ''​MyDFT_1.py''​ en ''​MyDFT_2.py''​   - Copiez le programme ''​MyDFT_1.py''​ en ''​MyDFT_2.py''​
   - Modifiez ''​MyDFT_2.py''​ suivant les 7 spécifications ci-dessus   - Modifiez ''​MyDFT_2.py''​ suivant les 7 spécifications ci-dessus
Ligne 1091: Ligne 1151:
   - changer le domaine d'​itération pour la boucle : ''​range()''​ par ''​numba.prange()''​   - changer le domaine d'​itération pour la boucle : ''​range()''​ par ''​numba.prange()''​
  
-<note warning>​**Exercice #4.3 : implémentation Python Numpy**+<note warning>​**Exercice #5.3 : implémentation Python Numpy**
   - Copiez le programme ''​MyDFT_2.py''​ en ''​MyDFT_3.py''​ et exploitez ce dernier   - Copiez le programme ''​MyDFT_2.py''​ en ''​MyDFT_3.py''​ et exploitez ce dernier
   - Copiez la fonction ''​NumpyDFT''​ en ''​NumbaDFT''​   - Copiez la fonction ''​NumpyDFT''​ en ''​NumbaDFT''​
Ligne 1121: Ligne 1181:
 Pour l'​implémentation OpenCL, la version "​naïve"​ de l'​implémentation va servir. Pour cela, il suffit de reprendre la définition de la méthode naïve et de l'​implémenter en C dans un noyau OpenCL. A noter que Pi n'​étant dans une variable définie, il faut explicitement la détailler dans le noyau OpenCL. Autre détail important : le //cast//. De manière a éviter tout effet de bord, il est fortement recommandé de //caster// les opérations dans la précision flottante souhaitée pour des opérations sur des indices entiers. Pour l'​implémentation OpenCL, la version "​naïve"​ de l'​implémentation va servir. Pour cela, il suffit de reprendre la définition de la méthode naïve et de l'​implémenter en C dans un noyau OpenCL. A noter que Pi n'​étant dans une variable définie, il faut explicitement la détailler dans le noyau OpenCL. Autre détail important : le //cast//. De manière a éviter tout effet de bord, il est fortement recommandé de //caster// les opérations dans la précision flottante souhaitée pour des opérations sur des indices entiers.
  
-<note warning>​**Exercice #4.4 : implémentation Python OpenCL**+<note warning>​**Exercice #5.4 : implémentation Python OpenCL**
   - Copiez le programme ''​MyDFT_3.py''​ en ''​MyDFT_4.py''​ et exploitez ce dernier   - Copiez le programme ''​MyDFT_3.py''​ en ''​MyDFT_4.py''​ et exploitez ce dernier
   - Copiez la fonction python ''​OpenCLAddition''​ en ''​OpenCLDFT''​   - Copiez la fonction python ''​OpenCLAddition''​ en ''​OpenCLDFT''​
Ligne 1196: Ligne 1256:
   * modifier les vecteurs en sortie (2 vecteurs)   * modifier les vecteurs en sortie (2 vecteurs)
  
-<note warning>​**Exercice #4.5 : implémentation Python CUDA**+<note warning>​**Exercice #5.5 : implémentation Python CUDA**
   - Copiez le programme ''​MyDFT_4.py''​ en ''​MyDFT_5.py''​ et exploitez ce dernier   - Copiez le programme ''​MyDFT_4.py''​ en ''​MyDFT_5.py''​ et exploitez ce dernier
   - Copiez la fonction python ''​CUDAAddition''​ en ''​CUDADFT''​   - Copiez la fonction python ''​CUDAAddition''​ en ''​CUDADFT''​
formation/gpu4cbp.txt · Dernière modification: 2024/02/22 11:47 par equemene