Non-classical large deviations in the AB model

Hugo Touchette

School of Mathematical Sciences
Queen Mary, University of London

Workshop on Computation of Transition Trajectories and Rare Events in Non-Equilibrium Systems

ENS Lyon, France
13 June 2012

Outline

Study

- Low-noise large deviations for stationary distribution
- Fluctuation paths - instantons
- Nonequilibrium case
- Non-isolated attractor

Plan
(1) Recap on Freidlin-Wentzell theory
(2) AB model-results
(3) Conclusion

Freddy Bouchet (ENS Lyon), HT
Non-classical large deviations for a noisy system with non-isolated attractors, J. Stat. Mech. P05028, 2012

Noise-perturbed dynamical systems

- Noisy system:

$$
\dot{x}(t)=f(x(t))+\sqrt{\nu} \xi(t)
$$

- Gaussian white noise: $\xi(t)$

- Zero-noise system:

$$
\dot{x}(t)=f(x(t))
$$

- Fixed points: $f\left(x^{*}\right)=0$
- Attractor: x_{s}
\square
- Propagator $P(x, t x, 0) \sim$ e
- Stationary distribution: $P(x) \sim e$

Noise-perturbed dynamical systems

- Noisy system:

$$
\dot{x}(t)=f(x(t))+\sqrt{\nu} \xi(t)
$$

- Gaussian white noise: $\xi(t)$

- Zero-noise system:

$$
\dot{x}(t)=f(x(t))
$$

- Fixed points: $f\left(x^{*}\right)=0$
- Attractor: x_{s}

Interesting probabilities

- Propagator: $P\left(x, t \mid x_{s}, 0\right) \sim e^{-V(x, t) / \nu}$
- Stationary distribution: $P(x) \sim e^{-V(x) / \nu}$

Stationary distribution

- Path integral:

$$
P\left(x, t \mid x_{s}, 0\right)=\int_{x_{s}, 0}^{x, t} \mathcal{D}[x] P[x]
$$

- Path probability:

$$
P[x] \sim e^{-l[x] / \nu}, \quad I[x]=\frac{1}{2} \int_{0}^{t}(\dot{x}-f(x))^{2} d s
$$

- Most probable path $=$ min action path $=$ instanton
- Onsager-Machlup 1950s; Graham 1980s; Freidlin-Wentzell 1970-80s
- Semi-classical approximation

Stationary distribution

- Path integral:

$$
P\left(x, t \mid x_{s}, 0\right)=\int_{x_{s}, 0}^{x, t} \mathcal{D}[x] P[x]
$$

- Path probability:

$$
P[x] \sim e^{-I[x] / \nu}, \quad I[x]=\frac{1}{2} \int_{0}^{t}(\dot{x}-f(x))^{2} d s
$$

Large deviation approximation

$$
P(x) \sim e^{-V(x) / \nu}, \quad V(x)=\inf _{x(0)=x_{s}, x(\infty)=x} I[x]
$$

- Most probable path $=$ min action path $=$ instanton
- Onsager-Machlup 1950s; Graham 1980s; Freidlin-Wentzell 1970-80s
- Semi-classical approximation

Example: Gradient dynamics

- Gradient system:

$$
\dot{x}(t)=-\nabla U(x(t))+\sqrt{\nu} \xi(t)
$$

- Stationary distribution:

$$
P(x) \sim e^{-V(x) / \nu}, \quad V(x)=2 U(x)
$$

- Instanton $=$ time-reverse of decay path from x to x_{s}
- Consequence of detailed balance
- Equilibrium system
- Non-gradient system
- Nonequilibrium system
- Not instanton-based

Example: Gradient dynamics

- Gradient system:

$$
\dot{x}(t)=-\nabla U(x(t))+\sqrt{\nu} \xi(t)
$$

- Stationary distribution:

$$
P(x) \sim e^{-V(x) / \nu}, \quad V(x)=2 U(x)
$$

- Instanton $=$ time-reverse of decay path from x to x_{s}
- Consequence of detailed balance
- Equilibrium system

This talk

$$
P(x) \sim e^{-V(x) / \sqrt{\nu}}
$$

- Non-gradient system
- Nonequilibrium system
- Not instanton-based

AB model

Noiseless dynamics

$$
\begin{aligned}
& \dot{A}=-A B \\
& \dot{B}=A^{2}
\end{aligned}
$$

- Stable line: $A=0, B>0$
- Unstable line: $A=0, B<0$
- Energy:

$$
E=A^{2}+B^{2}, \quad \dot{E}=0
$$

Perturbed dynamics

$$
\begin{aligned}
\dot{A} & =-A B-\nu A+\sigma_{A} \sqrt{\nu} \xi_{A}(t) \\
\dot{B} & =A^{2} \quad-\nu B+\sigma_{B} \sqrt{\nu} \xi_{B}(t)
\end{aligned}
$$

- Dissipation needed for stationarity
- Toy model of hydrodynamic equations (∞ stable states)

AB model

Noiseless dynamics

$$
\begin{aligned}
\dot{A} & =-A B \\
\dot{B} & =A^{2}
\end{aligned}
$$

- Stable line: $A=0, B>0$
- Unstable line: $A=0, B<0$
- Energy:

$$
E=A^{2}+B^{2}, \quad \dot{E}=0
$$

Perturbed dynamics

$$
\begin{array}{ll}
\dot{A}=-A B & -\nu A+\sigma_{A} \sqrt{\nu} \xi_{A}(t) \\
\dot{B}=A^{2} & -\nu B+\sigma_{B} \sqrt{\nu} \xi_{B}(t)
\end{array}
$$

- Dissipation needed for stationarity
- Toy model of hydrodynamic equations (∞ stable states)

Stationary distribution

- $P(A, B)$
- Numerical integration of Fokker-Planck equation
- Concentration around stable line as $\nu \rightarrow 0$
- Radial symmetry away from stable line

Large deviations near stable line

- Stationary distribution:

$$
P(A, B) \sim e^{-l(A, B) / \nu}
$$

- Rate function or quasi-potential:

$$
I(A, B)=\frac{B}{\sigma_{A}^{2}} A^{2}-\frac{2 \sigma_{A}^{2}+\sigma_{B}^{2}}{8 \sigma_{A}^{4} B} A^{4}+O\left(A^{6}\right)
$$

- Instanton approximation $=$ Fokker-Planck ν-expansion lowest order
- Fokker-Planck ν-expansion - higher order

Large deviations near stable line (cont'd)

- Instanton: stable line $\rightarrow(A, B)$
- $I(A, B)=I[$ instanton $]>0$
- Decay path: $(A, B) \rightarrow$ stable line - $I[$ decay path $]=0$
- Instanton \neq Time reverse of decay path
- Nonequilibrium (non-gradient) system

Large deviations near stable line (cont'd)

- Instanton: stable line $\rightarrow(A, B)$
- $I(A, B)=I[$ instanton $]>0$
- Decay path: $(A, B) \rightarrow$ stable line
- I decay path $]=0$
- Instanton \neq Time reverse of decay path
- Nonequilibrium (non-gradient) system

Large deviations near stable line (cont'd)

- Instanton: stable line $\rightarrow(A, B)$
- $I(A, B)=I[$ instanton $]>0$
- Decay path: $(A, B) \rightarrow$ stable line
- I decay path $]=0$
- Instanton \neq Time reverse of decay path
- Nonequilibrium (non-gradient) system

Nonequilibrium current

- Fokker-Planck equation:

$$
\frac{\partial}{\partial t} P(A, B)=-\nabla \cdot \mathbf{J}
$$

- Probability current:

$$
\mathbf{J}=\left(J_{A}, J_{B}\right)
$$

- Stationary current: $\nabla \cdot \mathbf{J}=0$

- Components:

$$
\begin{aligned}
& J_{A}=(-A B-\nu A) P(A, B)-\frac{\nu \sigma_{A}^{2}}{2} \frac{\partial P(A, B)}{\partial A} \\
& J_{B}=\left(A^{2}-\nu B\right) P(A, B)-\frac{\nu \sigma_{B}^{2}}{2} \frac{\partial P(A, B)}{\partial B}
\end{aligned}
$$

Large deviations near unstable line

- Any point (A, B) reachable by instanton of zero action!
- Sub-instanton
- Consequence:

$$
P(A, B) \sim e^{-0 / \nu}
$$

- Meaning:
 - corrections
- Competings large deviations:

Large deviations near unstable line

- Any point (A, B) reachable by instanton of zero action!
- Sub-instanton
- Consequence:

$$
P(A, B) \sim e^{-0 / \nu}
$$

- Meaning:

$$
P(A, B) \sim e^{-0 / \nu}+\text { corrections }
$$

- Competings large deviations:

$$
P(A, B) \sim \underbrace{e^{-I(A, B) / \nu}}_{\text {stable line }}+\underbrace{e^{-J(A, B) / \sqrt{\nu}}}_{\text {unstable line }}
$$

Large deviations near unstable line (cont'd)

- Low-noise expansion of Fokker-Planck equation
- Ansatz:

$$
P(A, B) \sim e^{-J(A, B) / \sqrt{\nu}}
$$

- Hamilton-Jacobi equation for $J(A, B)$
- Solve in polar coordinates
- Solution:

Large deviations near unstable line (cont'd)

- Low-noise expansion of Fokker-Planck equation
- Ansatz:

$$
P(A, B) \sim e^{-J(A, B) / \sqrt{\nu}}
$$

- Hamilton-Jacobi equation for $J(A, B)$
- Solve in polar coordinates
- Solution:

$$
\begin{gathered}
J(r)=\frac{2 \sqrt{2}}{3} r^{3 / 2} \\
J(A, B)=\frac{2 \sqrt{2}}{3}\left(A^{2}+B^{2}\right)^{3 / 4}
\end{gathered}
$$

- Radially symmetric: Sub-instantons are radially symmetric

Summary

- AB model: Nonequilibrium system
- Line of stable points connected to a line of unstable points
- Low-noise large deviations:

- Explicit rate functions
- Instanton approximation (Freidlin-Wentzell) - Low-noise expansion of Fokker-Planck
- Overall dominant term:

- Crucial ingredient: Non-isolated attractor

Summary

- AB model: Nonequilibrium system
- Line of stable points connected to a line of unstable points
- Low-noise large deviations:

$$
P(A, B) \sim \underbrace{e^{-l(A, B) / \nu}}_{\text {stable line }}+\underbrace{e^{-J(A, B) / \sqrt{\nu}}}_{\text {unstable line }}
$$

- Explicit rate functions
- Instanton approximation (Freidlin-Wentzell)
- Low-noise expansion of Fokker-Planck
- Overall dominant term:

- Crucial ingredient: Non-isolated attractor

Summary

- AB model: Nonequilibrium system
- Line of stable points connected to a line of unstable points
- Low-noise large deviations:

$$
P(A, B) \sim \underbrace{e^{-l(A, B) / \nu}}_{\text {stable line }}+\underbrace{e^{-J(A, B) / \sqrt{\nu}}}_{\text {unstable line }}
$$

- Explicit rate functions
- Instanton approximation (Freidlin-Wentzell)
- Low-noise expansion of Fokker-Planck
- Overall dominant term:

$$
P(A, B) \sim e^{-J(A, B) / \sqrt{\nu}}
$$

- Crucial ingredient: Non-isolated attractor

More general models

Unconnected sets

- All fluctuations paths are instantons
- $P(x) \sim e^{-l[\text { instanton }] / \nu}$
- Classical large deviations
- Instantons + sub-instantons

deviations
- Exponent $\alpha=\frac{1}{2}$ always?
- Need nonequilibrium?

More general models

Unconnected sets

- All fluctuations paths are instantons
- $P(x) \sim e^{-/[\text {instanton }] / \nu}$
- Classical large deviations

Connected sets

- Instantons + sub-instantons
- $P(x) \sim e^{-l[\text { sub-instanton }] / \nu^{\alpha}}$
- Classical + non-classical large deviations
- Exponent $\alpha=\frac{1}{2}$ always?
- Need nonequilibrium?

More general models

Connected sets

- Instantons + sub-instantons
- $P(x) \sim e^{-l[\text { sub-instanton }] / \nu^{\alpha}}$
- Classical + non-classical large deviations

Unconnected sets

- All fluctuations paths are instantons
- $P(x) \sim e^{-l[\text { instanton }] / \nu}$
- Classical large deviations
- Exponent $\alpha=\frac{1}{2}$ always?
- Need nonequilibrium?

