Large deviations and heterogeneities in driven or non-driven kinetically constrained models

Estelle Pitard

¹CNRS, Laboratoire Charles Coulomb, Montpellier, France

Rare Events in Non-equilibrium Systems- ENS Lyon- 11 June 2012

with: J.P. Garrahan (Nottingham), R.L. Jack (Bath), V. Lecomte, K. van Duijvendijk, F. van Wijland (Paris), F. Turci (Montpellier)

Outline

- Introduction: what is a glassy system?
- Dynamic transition in Kinetically Constrained Models- large deviations
 - Phenomenology of kinetically constrained models (KCMs)
 - Relevant order parameters for space-time trajectories: activity K
 - We will show that in the stationary state, there is a coexistence between active and inactive trajectories.
 - These trajectories can be probed by tuning an external parameter s, or "chaoticity temperature".
 - Results: mean-field/ finite dimensions
- Driven KCMs, current heterogeneities and large deviations
 - A new dynamic phase transition for the integrated current Q
 - Fluctuations: large deviation function for the current
 - Link with microscopic spatial heterogeneities

伺い イヨト イヨト

Introduction

- What is a glassy phase?
- No static signature difference between fluid and glass
- No thermodynamical transition, no T_c
- How can one realize that a system is in a glassy state?
 - -either drive it out-of-equilibrium or investigate its relaxation properties
 - $\bullet \rightarrow$ dramatic increase in viscosity, ageing.
- Importance of the dynamics and of spatio-temporal heterogeneitites (Fredrickson-Andersen 1984) → Fluctuations!
- Models with
 - long-lived correlated spatial structures
 - slow, intermittent dynamics.
- Our choice: Kinetically Constrained Models (KCMs).

- 2 2 3 4 2 3 3

Phenomenology of KCMs

- Spin models on a lattice / lattice gases, designed to mimick steric effects in amorphous materials:
 - $s_i = 1$, $n_i = 1$: "mobile" particle region of low density fast dynamics
 - $s_i = -1$, $n_i = 0$: "blocked" particle region of high density slow dynamics
- Specific dynamical rules:

Fredrickson-Andersen (FA) model in 1 dimension: a spin can flip only if at least one of its nearest neighbours is in the mobile state.

 $\downarrow\uparrow\downarrow \rightleftharpoons\downarrow\downarrow\downarrow\downarrow$ is forbidden.

Mobile/blocked particles self-organize in space \rightarrow glassy, slow relaxation and dynamical correlation length ξ .

How to classify time-trajectories and their activity?

(F. Ritort, P. Sollich, Adv. Phys 52, 219 (2003).)

▲□▶ ▲□▶ ▲■▶ ▲■▶ = ののの

Relevant order parameters for space-time trajectories

- Ruelle formalism: from deterministic dynamical systems to continous-time Markov dynamics
- Observable: Activity K(t): number of flips between 0 and t, given a history C₀ → C₁ → .. → C_t.
- Master equation: $\frac{\partial P}{\partial t}(C, t) = \sum_{C'} W(C' \to C)P(C', t) r(C)P(C, t)$, where $r(C) = \sum_{C' \neq C} W(C \to C')$
- Introduce s (analog of a temperature), conjugated to K:
- $\hat{P}(C, s, t) = \sum_{K} e^{-sK} P(C, K, t) \rightarrow$ new evolution equation
- Generating function of K: Z_K(s, t) = ∑_C P̂(C, s, t) =< e^{-sK} >.
 For t→∞, Z_K(s, t) ≃ e^{tψ_K(s)}.
 → ψ_K(s) is the large deviation function for the activity K.

< 同 > < 三 > < 三 >

Relevant order parameters for space-time trajectories

• Average activity:
$$\frac{\langle K \rangle(s,t)}{Nt} = -\frac{1}{N}\psi'_{K}(s).$$

• Analogy with the canonical ensemble:

• space of configurations, fixed β : $Z(\beta) = \sum_{C} e^{-\beta H} \simeq e^{-Nf(\beta)}, N \to \infty$.

• space of trajectories, fixed s:

$$Z_{K}(s,t) = \sum_{C,K} e^{-sK} P(C,K,t) \simeq e^{-tf_{K}(s)}, t \to \infty$$

•
$$f_{\mathcal{K}}(s) = -\psi_{\mathcal{K}}(s)$$
: free energy for trajectories

•
$$\frac{\langle K \rangle(s,t)}{Nt}$$
: mean activity/chaoticity.

Active phase: $\langle K \rangle (s, t)/(Nt) \rangle$ 0: $s \langle 0$. Inactive phase: $\langle K \rangle (s, t)/(Nt) = 0$: $s \rangle 0$.

Results: Mean-Field FA

- $W_i(0 \to 1) = k' \frac{n}{N}, W_i(1 \to 0) = k \frac{n-1}{N}, n = \sum_i n_i.$
- The result is a variational principle for ψ_K(s), involving a Landau-Ginzburg free energy F_K(ρ, s) (ρ: density of mobile spins):

$$\begin{split} &\frac{1}{N}f_{\kappa}(s) = -\frac{1}{N}\psi_{\kappa}(s) = \min_{\rho} F_{\kappa}(\rho, s), \text{ with } \\ &F_{\kappa}(\rho, s) = -2\rho e^{-s}(\rho(1-\rho)kk')^{1/2} + k'\rho(1-\rho) + k\rho^2 \end{split}$$

- Minima of $F_{\kappa}(\rho, s)$ at fixed s:
- s > 0: inactive phase, $\rho_K(s) = 0$, $\psi_K(s)/N = 0$.
- s = 0: coexistence $\rho_{\kappa}(0) = 0$ and $\rho_{\kappa}(0) = \rho^*$, $\psi_{\kappa}(0) = 0$, \rightarrow first order phase transition.
- s < 0: active phase, $\rho_K(s) > 0$, $\psi_K(s)/N > 0$.

Results: Mean-Field FA

• $F_{\kappa}(\rho, s)$ for different values of s:

< 17 ▶

< ∃ >

-∢ ⊒ →

э

Results: Mean-Field unconstrained model

• One removes the constraints: $W_i(0 \rightarrow 1) = k'$, $W_i(1 \rightarrow 0) = k$, for all i

•
$$F_{\kappa}(\rho,s) = -2e^{-s}(\rho(1-\rho)kk')^{1/2} + k'(1-\rho) + k\rho$$

 $\bullet \ \rightarrow \text{ No phase transition}$

____ ▶

(E)

э

- Numerical solution using the algorithm of Giardina, Kurchan, Peliti for large deviation functions. (C. Giardinà, J. Kurchan, L. Peliti, Phys. Rev. Lett. 96, 120603 (2006)).
- First-order phase transition for the FA model in 1d.

• $\rho_{\kappa}(s)$ for the FA model in 1d. True also for particle systems!

- "Dynamic first-order transition in kinetically constrained models of glasses", J.P. Garrahan, R.L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, F. van Wijland, Phys. Rev. Lett. 98, 195702 (2007).
- "First-order dynamical phase transition in models of glasses: an approach based on ensembles of histories", J.P. Garrahan, R.L. Jack, V. Lecomte, E. Pitard, K. van Duijvendijk, F. van Wijland, J. Phys. A 42 (2009).

Driven KCMs, heterogeneities and large deviations

2d ASEP with kinetic constraints, a model of particles at fixed density ρ on a 2d square lattice (model introduced by M. Sellitto, 2008).

- Dynamical constraint: A particle can hop to an empty neighbouring site if it has at most 2 occupied neighbouring sites, before and after the move
- Asymmetric Exclusion Process: Driving field \vec{E} in the horizontal direction.

For low densities $\rho {\rm ,}$

- the current J is an increasing function of E
- J is well approximated by a mean-field argument: $J = (1 - e^{-E})\rho(1 - \rho)(1 - \rho^3)^2$

A B > A B >

Driven KCMs, current heterogeneities and large deviations

For large densities, $\rho > \rho_c \simeq 0.78$,

- $E < E_{max}$: shear-thinning, the current J grows with E
- $E > E_{max}$: shear-thickening, J decreases with E

Driven KCMs, current heterogeneities and large deviations

Microscopic analysis: transient shear-banding at large fields, localization of the current.

 \rightarrow very different density profiles for small and large driving fields.

Large deviation functions for the activity K(t) and the integrated current Q(t): $Q(t) = \int_{0}^{t} J(t') dt'$.

- For K, the first-order transition persists like for unforced KCMs.
- For *Q*, there is a first-order transition only at large fields (coexistence of histories with large current and histories with no current). Absent for ASEP without constraints!

Large deviation functions for the integrated current Q(t): Fluctuation theorem $P(Q)/P(-Q) = e^Q$ implies $\psi_Q(s) = \psi_Q(E - s)$.

Dynamical blocking walls -1

Dense domain walls play the role of kinetic traps at large fields.

- At small *E*, voids are random.
- At large *E*, voids organize into domain walls transverse to the field.

Dynamical blocking walls -2

4

6 8 10 12

w/<w>

0 2

Phenomenological fit of J(E) on the basis of the effective blocking effect of the walls:

$$J(E) \simeq A(1 - e^{-E})(1 - \alpha < w >).$$

• "Large deviations and heterogeneities in a driven kinetically constrained model", F. Turci, E. Pitard, Europhys. Lett. 94, 10003 (2011).

医下颌 医下

Size effects -1 *H*: vertical confinement length.

ρ=0.80, E=2

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Size effects -2 $\xi(\rho, E)$: dynamical correlation length.

For E = 0, $\xi(\rho) \propto \exp(\exp(C/(1-\rho)))$. (Toninelli, Biroli, Fisher, 2004.)

 \rightarrow Determination of $\xi(\rho, E)$: dynamical correlation length in the presence of an external field *E*. *F. Turci, M. Sellitto, E. Pitard, in preparation*

Conclusions

- Large deviation functions of generating functions in trajectories space provide useful order parameters that probe active/inactive phases or large current/small current phases according to the observable. *s* plays the role of a "chaoticity" temperature.
- KCMs show a first-order phase transition at *s* = 0. In a real system, there is coexistence between 2 different dynamical phases.
- How to probe these two phases experimentally?
- Link between transport properties, microscopic lengths between defects and dynamical correlation lengths?
- Dynamic transitions and phase coexistence in realistic (Lennard-Jones) glasses \rightarrow new perspectives

L. Hedges, R.L. Jack, J-P. Garrahan, D.C. Chandler, Science, 323, 1309 (2009).

E. Pitard, V. Lecomte, F. van Wijland, Europhys. Lett. 96 56002 (2011).

- 4 同 6 - 4 三 6 - 4 三 6

Dynamic transition in KCMs- large deviations Driven KCMs, current heterogeneities and large deviations

Dynamic transitions in realistic glasses

• Cloning algorithm for a generalized activity, LJ mixture $K(t) = \int_0^t V_{eff}(t') dt'$ where $Veff = \sum_i \left[\frac{\beta}{4}F_i^2 + \frac{1}{2}\nabla F_i\right]$ with V.

• Prob to stay in the same configuration between t and $t + dt \sim exp(-\beta V_{eff} dt)$ Two phases:

Small *K*: energy basins, "inactive" Large *K*: local maxima, "active"

• Link between dynamic phases and energy landscape?

< ∃> < ∃>

Dynamic transition in KCMs- large deviations Driven KCMs, current heterogeneities and large deviations

Dynamic transition in realistic glasses

• Transition path-sampling in the *s*-ensemble.

(Hedges, Jack, Garrahan, Chandler, Science (2009)).

Activity:

$$\begin{split} \mathcal{K}(t) &= \Delta t \sum_{t=0}^{t_{obs}} \sum_{i=1}^{N} [\vec{r}_i(t + \Delta t) - \vec{r}_i(t)]^2 \\ \Delta t: \text{ time to move a distance } \sim \text{ molecular diameter.} \end{split}$$

Dynamic transition in KCMs- large deviations Driven KCMs, current heterogeneities and large deviations

Dynamic transition in realistic glasses

• Experimental challenge: measure P(K). (for KCMs: Jack, Garrahan, Chandler, JCP (2006)).

- Particle tracking?
- Importance of finite-size effects
- Experimental parameter for s?

- Numerical solution using the algorithm of Giardina, Kurchan, Peliti (discrete time Markov processes) for large deviation functions.
- $P(C,t) = \sum_{C'} W(C \rightarrow C') P(C',t-1)$
- solution at fixed C_0 :

$$P(C,t) = \sum_{C_1,\ldots,C_{t-1}} W(C_0 \to C_1) \ldots W(C_{t-1} \to C)$$

• One looks for the large deviation function of an additive observable $A = \alpha(C_0 \to C_1) + \dots + \alpha(C_{t-1} \to C_t).$ $< e^{-sA} > \simeq e^{t\psi_{\alpha}(s)}, \ t \to \infty$

イロト (過) (ヨ) (ヨ) (ヨ) () ()

• Defining
$$W_{\alpha}(s)(C \to C') = W(C \to C')e^{-s\alpha(C \to C')}$$
,

$$< e^{-sA} >= \sum_{C_1,\ldots,C_t} \prod_{i=0}^{t-1} W_{\alpha}(s)(C_i \rightarrow C_{i+1})$$

• but $W_{\alpha}(s)$ is not a stochastic matrix.

• Introducing
$$Y(C) = \sum_{C'} W_{\alpha}(s)(C \to C')$$
, and
 $W'_{\alpha}(s)(C \to C') = \frac{W_{\alpha}(s)(C \to C')}{Y(C)}$, $W'_{\alpha}(s)$ is stochastic.

$$< e^{-sA} > = \sum_{C_1,...,C_t} \prod_{i=0}^{t-1} W'_{\alpha}(s)(C_i \to C_{i+1})Y(C_i)$$

<ロ> <同> <同> < 回> < 回>

3

- One performs the dynamics of N copies $(N \gg 1)$ of the system:
 - each copy in configuration C is cloned with probability Y(C)
 - stochastic evolution with $W'_{lpha}(s)(C
 ightarrow C')$
 - the number of copies is sent back uniformly to N, with ratio X_t

•
$$\psi_{\alpha}(s) = -\lim_{t\to\infty} \frac{1}{t} \ln(X_1 \dots X_t)$$

(C. Giardinà, J. Kurchan, L. Peliti, Phys. Rev. Lett. 96, 120603 (2006)).

不足下 不足下