Transition Trajectory for Equilibrium Droplet Formation

Andreas Nußbaumer, Elmar Bittner, and Wolfhard Janke

Computational Quantum Field Theory Institut für Theoretische Physik Universität Leipzig

Computation of Transition Trajectories and Rare Events in Non-Equilibrium Systems

Centre Blaise Pascal, ENS de Lyon, 13 June 2012

< 同 > < 三 > < 三

Outline

2 Theory

3 Monte Carlo (MC) Simulations

- Square lattice NN Ising model
- Triangular lattice Ising model
- Square lattice NNN Ising model

Outline

Monte Carlo (MC) Simulations

- Square lattice NN Ising model
- Triangular lattice Ising model
- Square lattice NNN Ising model

Outline

3 Monte Carlo (MC) Simulations

- Square lattice NN Ising model
- Triangular lattice Ising model
- Square lattice NNN Ising model

3 × 4 3

Evaporated

Condensed

Balancing fluctuations vs interface free energy, i.e., entropy vs energy

3 × 4 3

Droplet formation: nucleation of "wrong" phase

- fluid droplet in gas phase, or
- "-" Ising droplet in "+" phase

Fisher; Binder & Kalos; Furukawa & Binder; Pleimling & Selke; Neuhaus & Hager; ... Biskup, L. Chayes & Kotecký, Europhys. Lett. 60 (2002) 21; Comm. Math. Phys. 242 (2003) 137

Theory: Equilibrium Droplet Formation

2D Ising model formulation

lattice gas:

- spin up = black = vacancy
- spin down = white = particle

$$M = -m_0 \underbrace{v_L}_{\text{droplet}} + m_0 (\underbrace{V - v_L}_{\text{background}})$$
$$\Rightarrow \delta M \equiv M - M_0 = -2v_L m_0$$

Gaussian fluctuations around peak:

$$\exp\left[-\frac{(\delta M)^2}{2V\chi}\right] = \exp\left[-\frac{(2m_0v_L)^2}{2V\chi}\right]$$

 $\chi = \chi(\beta) = \beta V \left[\langle m^2 \rangle - \langle m \rangle^2 \right] = \text{susceptibility}$

Interface free energy of droplet:

$$\exp\left[-\tau_{\mathrm{W}}\sqrt{v_{L}}\right]$$

 $\tau_{\rm W} = \tau_{\rm W}(\beta) =$ interfacial free energy per unit volume of optimal Wulff shaped droplet

< 回 > < 回 > < 回 >

2D Ising model Wulff shapes at various temperatures:

 \Rightarrow for 1.0 \lesssim T \leq T_c \approx 2.27 the Wulff shape is almost isotropic

3 × 4 3

Balancing the exponents of the two limiting cases:

$$\Delta = \frac{(2m_0v_L)^2/(2V\chi)}{\tau_W\sqrt{v_L}} = 2\frac{m_0^2}{\chi\tau_W}\frac{v_L^{3/2}}{V}$$

Terms are equally important for $\Delta \stackrel{!}{=} 1$:

$$\Rightarrow v_L \Rightarrow -\delta M = \theta V^{2/3}$$
 with $\theta = \left(\frac{2\chi \tau_W}{\sqrt{2m_0}}\right)^{2/3}$

• $-\delta M \gg \theta V^{2/3}$: droplet dominates

• $-\delta M \ll \theta V^{2/3}$: fluctuations dominate

"Isoperimetric reasoning" (Biskup *et al.*) shows that either of these two cases dominate – but no droplets of intermediate size can exist.

In general, a single large droplet of size v_d coexists with small fluctuations taking $v_L - v_d$ of the total excess.

- large droplet costs $e^{-\tau_W \sqrt{V_d}}$, absorbs fraction $\delta M_d = -2v_d m_0$ of δM
- fluctuations cost $e^{-(\delta M \delta M_d)^2/(2V\chi)}$

For large systems, probability for magnetization excess:

$$\mathbf{e}^{- au_{\mathrm{W}}\sqrt{v_{\mathrm{d}}}-rac{\left(\delta M-\delta M_{\mathrm{d}}
ight)^{2}}{2V\chi}}=\mathbf{e}^{- au_{\mathrm{W}}\sqrt{rac{-\delta M}{2m_{0}}}\Phi_{\Delta}(\lambda)}\,,\quad\Phi_{\Delta}(\lambda)=\left[\sqrt{\lambda}+\Delta(1-\lambda)^{2}
ight]$$

where $\lambda = \delta M_d / \delta M$ is the fraction taken up by the droplet.

 \Rightarrow Optimize $\Phi_{\Delta}(\lambda)$ in λ for given Δ

< 同 > < 回 > < 回 >

General *d*: $\Delta_c = \frac{1}{d} \left(\frac{d+1}{2} \right)^{\frac{d+1}{d}}, \lambda_c = \frac{2}{d+1}$

Wolfhard Janke

Transition Trajectory for Equilibrium Droplet Formation

Solution:

$$\lambda = \delta M_{\rm d} / \delta M \simeq$$
 droplet size
 $\Delta = 2 \frac{m_0^2}{\chi \tau_{\rm W}} \frac{v_L^{3/2}}{V} \simeq$ scaled magnetization ($\Delta = 0$: peak location)

3

Solution:

$$\lambda = \delta M_{\rm d} / \delta M \simeq$$
 droplet size
 $\Delta = 2 \frac{m_0^2}{\chi \tau_{\rm W}} \frac{v_L^{3/2}}{V} \simeq$ scaled magnetization ($\Delta = 0$: peak location)

Biskup et al., Europhys. Lett. 60 (2002) 21; Comm. Math. Phys. 242 (2003) 132

Wolfhard Janke

Transition Trajectory for Equilibrium Droplet Formation

Numerical Studies

Suppressed two-phase region: use multicanonical type of simulation in magnetisation

Clear NON-random-walk behaviour observed !

Neuhaus & Hager, J. Stat. Phys. **116** (2003) 47

э

Numerical Studies

Suppressed two-phase region: use multicanonical type of simulation in magnetisation

Clear NON-random-walk behaviour observed !

Neuhaus & Hager, J. Stat. Phys. 116 (2003) 47

Reason: Two "hidden" barriers along transition trajectory

> < ≣

Wolfhard Janke T

Reason: Two "hidden" barriers along transition trajectory

ъ

Droplet/strip barrier rather well understood in 2D:

- strip: interface length = 2L
- circular droplet: Same length for radius $R = L/\pi$, area $= L^2/\pi$
- # overturned spins = L²/π, hence (assuming isotropic interface tension)

• barrier located at about $m = m_0/\pi$

But $2R = \frac{2}{\pi}L < L$:

Leung & Zia, J. Phys. A 23 (1990) 4593

MC Simulations: Equilibrium Droplet Formation

Three goals:

- Test analytical prediction for the thermodynamic limit
- Investigate finite-size corrections
- Study lattice universality

Simulation strategy:

- fix the total excess v_L
- v_L together with the "known constants" m_0 , χ , τ_W yields $\Delta(m_0, \chi, \tau_W, v_L)$.
- "micro-magnetical" simulation at:

$$M = -m_0 v_L + m_0 (V - v_L) \quad \Rightarrow \quad M = m_0 V \left(1 - 2 \frac{v_L}{V}\right)$$

• measure λ (\simeq relative size of largest droplet)

Motivation	Square lattice NN Ising model
Theory	Triangular lattice Ising model
MC Simulations	Square lattice NNN Ising mode

Algorithm:

- Kawasaki dynamics (M = const.)
- measure

$$\lambda = \mathbf{v}_{\rm d}/\mathbf{v}_{\rm L}\,,$$

the largest droplet size v_d (i.e., second largest cluster), by using the Hoshen-Kopelman algorithm

Difficulty: v_d is the area of the second largest cluster \Rightarrow What is inside and what is outside?

Motivation Theory MC Simulations Square lattice NN Ising model Square lattice NNN Ising model

Idea: The Hoshen-Kopelman algorithm assigns to every cluster a unique number \Rightarrow interface between spins of the largest and second largest cluster

Droplet algorithm:

- o do Hoshen-Kopelman
- for every new cluster, mark positions of spins belonging to that cluster
- starting from a spin inside the second largest cluster, apply "flood-fill"
- flood-fill stops only at spins belonging to the largest cluster

∃ > ∢ ∃

Motivation Theory MC Simulations Square lattice NN Ising model Square lattice NNN Ising model

Idea: The Hoshen-Kopelman algorithm assigns to every cluster a unique number \Rightarrow interface between spins of the largest and second largest cluster

Droplet algorithm:

- o do Hoshen-Kopelman
- for every new cluster, mark positions of spins belonging to that cluster
- starting from a spin inside the second largest cluster, apply "flood-fill"
- flood-fill stops only at spins belonging to the largest cluster

3 × 4 3

Motivation	Square lattice NN Ising model
Theory	Triangular lattice Ising model
MC Simulations	Square lattice NNN Ising model

3 Monte Carlo (MC) Simulations

- Square lattice NN Ising model
- Triangular lattice Ising model
- Square lattice NNN Ising model

3 × 4 3

 Motivation
 Square lattice NN Ising model

 Theory
 Triangular lattice lsing model

 MC Simulations
 Square lattice NNN Ising model

Square lattice NN Ising model ($T = 1.5 \approx 0.66 T_c$)

m range between arrows scanned with Kawasaki dynamics

Motivation	Square lattice NN Ising model
Theory	Triangular lattice Ising model
IC Simulations	Square lattice NNN Ising mode

Square lattice NN Ising model

•
$$m_0(\beta) = (1 - \sinh^{-4} (2\beta))^{1/8}$$

• $\chi(\beta) = \beta \sum_{i=0}^{n} c_i u^{2i}$ with $u = 1/(2\sinh(2\beta))$
with $c = \{0, 0, 4, 16, 104, 416, 2224, 8896, 43840, 175296, 825648, 3300480, 15101920, ...\}$ up to order 323
(last term at $T = 1.5$: 10^{-158}). 2008–10: order 2000 ...
• $\tau_W(\beta) = 2\sqrt{W}$ with

$$W = \frac{4}{\beta^2} \int_0^{\beta\sigma_0} dx \cosh^{-1} \left[\frac{\cosh^2(2\beta)}{\sinh(2\beta)} - \cosh(x) \right]$$

and $\sigma_0 = 2 + \ln[\tanh(\beta)] / \beta$ the tension of an (1,0) interface.

Note: At $T = 1.5 \approx 0.66 T_c$, assuming isotropy: $\tau_W \approx 2\sqrt{\pi}\sigma_0 = 4.219$; exact $\tau_W = 4.245$ (0.6% difference).
 Motivation
 Square lattice NN Ising model

 Theory
 Triangular lattice Ising model

 MC Simulations
 Square lattice NNN Ising model

Square lattice NN Ising model $(T/T_c \approx 0.66)$

Nußbaumer, Bittner, Neuhaus & WJ, Europhys. Lett. 75 (2006) 716

Wolfhard Janke

Transition Trajectory for Equilibrium Droplet Formation

Motivation Theory MC Simulations Square lattice NN Ising model Square lattice NNN Ising mod

Square lattice NN Ising model

Numerical problem: "Hidden" barrier is reflected in simulations

evaporation/ condensation

э

Similar "hidden droplet barriers" in spin glasses?

Evaporation/condensation barrier:

Evaporation/condensation barrier:

Square lattice NN Ising model

Distribution of fraction $\lambda = v_d/v_L$ for Δ close to Δ_c

\Rightarrow Clear coexistence signal !

ъ

Motivation Theory MC Simulations Square lattice NNN Ising model

Square lattice NN Ising model

Free-energy barrier resp. autocorrelation time scaling with system size

Theory: $\beta \Delta F \approx 0.1522 L^{2/3}$ (at T = 1.5)

Nußbaumer, Bittner & WJ, Prog. Theor. Phys. Suppl. 184 (2010) 400

Motivation	Square lattice NN Ising model
Theory	Triangular lattice Ising model
MC Simulations	Square lattice NNN Ising model

3 Monte Carlo (MC) Simulations

- Square lattice NN Ising model
- Triangular lattice Ising model
- Square lattice NNN Ising model

∃ ► < ∃</p>

 Motivation
 Square lattice NN Ising model

 Theory
 Triangular lattice Ising model

 MC Simulations
 Square lattice NNN Ising model

Triangular lattice Ising model $(T/T_c \approx 0.66)$

Motivation	Square lattice NN Ising model
Theory	Triangular lattice Ising model
MC Simulations	Square lattice NNN Ising model

Monte Carlo (MC) Simulations

- Square lattice NN Ising model
- Triangular lattice Ising model
- Square lattice NNN Ising model

3 × 4 3

 Motivation
 Square lattice NN Ising model

 Theory
 Triangular lattice Ising model

 MC Simulations
 Square lattice NNN Ising model

Square lattice NNN Ising model ($T/T_c \approx 0.66$)

э

Check lattice universality ($L = 640, T/T_c \approx 0.66$)

3 🖌 🖌 3

Motivation	Square lattice NN Ising model
Theory	Triangular lattice Ising model
MC Simulations	Square lattice NNN Ising mode

Summary

- Analytical predictions for the asymptotic behaviour of the evaporation/condensation transition of the 2D square lattice NN Ising model confirmed numerically
- Finite-size corrections investigated
- Universality tested by studying triangular lattice and square lattice NNN Ising models

Nußbaumer, Bittner, Neuhaus & WJ, Europhys. Lett. **75** (2006) 716; Nußbaumer, Bittner & WJ, Phys. Rev. E **77** (2008) 041109; Prog. Theor. Phys. Suppl. **184** (2010) 400

∃ ▶ ∢ ∃ ▶

Motivation	Square lattice NN Ising mode
Theory	Triangular lattice Ising model
C Simulations	Square lattice NNN Ising mod

Acknowledgements

Collaboration with

- Thomas Neuhaus (JSC/IAS, FZ Jülich, Germany)
- Many thanks to
 - Kurt Binder, Roman Kotecký, Michel Pleimling, Royce Zia

Supported by

- Deutsche Forschungsgemeinschaft
- DFH–UFA Graduate School Nancy–Leipzig
- EU–RTN Network "ENRAGE"
- Graduate School "BuildMoNa"
- Computer time NIC, Forschungszentrum Jülich

THANK YOU !

5 ▶ ∢ 5 ▶

Motivation Square lattice NN Ising model Theory Triangular lattice Ising model MC Simulations Square lattice NNN Ising model

Advertisements

• WORKSHOP CompPhys12:

13th International NTZ–Workshop on Recent Developments in Computational Physics, 29 November – 01 December 2012, ITP, Universität Leipzig www.physik.uni-leipzig.de/~janke/CompPhys12

See you there ?

3 × 4 3

Motivation	Square lattice NN Ising model
Theory	Triangular lattice Ising model
MC Simulations	Square lattice NNN Ising mode

Oops – wait another minute, it's football time

伺 とくき とくきと

 Motivation
 Square lattice NN Ising model

 Theory
 Triangular lattice Ising model

 MC Simulations
 Square lattice NNN Ising model

Footballphysics

How probable is the next goal in soccer?

or

Football fever: goal distributions and non-Gaussian statistics

∃ ► < ∃</p>

Wolfhard Janke Transition Trajectory for Equilibrium Droplet Formation

Square lattice NN Ising model Triangular lattice Ising model Square lattice NNN Ising model

Simplest possible idea:

Wolfhard Janke Transition Trajectory for Equilibrium Droplet Formation

Wolfhard Janke Transition Trajectory for Equilibrium Droplet Formation

 Disclaimer: No NIC supercomputer (JUMP, JUBL, ...) time was used

 E. Bittner, A. Nußbaumer, M. Weigel & WJ, Eur. Phys. J. B 67 (2009)

 Q 2

 459

