An introduction to particle rare event simulation

P. Del Moral

INRIA Bordeaux- Sud Ouest & IMB & CMAP

Computation of transition trajectories and rare events in non equilibrium systems , ENS Lyon, June 2012

Some hyper-refs

- Feynman-Kac formulae, Genealogical & Interacting Particle Systems with appl., Springer (2004)
- Sequential Monte Carlo Samplers JRSS B. (2006). (joint work with A. Doucet & A. Jasra)
- A Backward Particle Interpretation of Feynman-Kac Formulae M2AN (2010). (joint work with A. Doucet & S.S. Singh)
- On the concentration of interacting processes. Foundations & Trends in Machine Learning [170p.] (2012). (joint work with Peng Hu & Liming Wu) [+ Refs]

More references on the website : Feynman-Kac models and particle systems [+ Links]

Introduction

Feynman-Kac models

Some rare event models

Stochastic analysis

Introduction

Some basic notation Importance sampling Acceptance-rejection samplers

Feynman-Kac models

Some rare event models

Stochastic analysis

・ロト ・ 日本・ 小田・ 小田・ 一日・ 今日・

Basic notation

 $\mathcal{P}(E)$ probability meas., $\mathcal{B}(E)$ bounded functions on E.

$$(\mu, f) \in \mathcal{P}(E) \times \mathcal{B}(E) \longrightarrow \mu(f) = \int \mu(dx) f(x)$$

• $Q(x_1, dx_2)$ integral operators $x_1 \in E_1 \rightsquigarrow x_2 \in E_2$

$$Q(f)(x_1) = \int Q(x_1, dx_2) f(x_2)$$

[\mu Q](dx_2) = $\int \mu(dx_1) Q(x_1, dx_2)$ (\Rightarrow [\mu Q](f) = \mu [Q(f)])

Boltzmann-Gibbs transformation

[Positive and bounded potential function G]

$$\mu(dx) \mapsto \Psi_G(\mu)(dx) = \frac{1}{\mu(G)} G(x) \mu(dx)$$

Importance sampling and optimal twisted measures

 $\mathbb{P}(X \in A) = \mathbb{P}_X(A) = 10^{-10} \rightsquigarrow \text{Find } \mathbb{P}_Y \text{ t.q. } \mathbb{P}_Y(A) = \mathbb{P}(Y \in A) \simeq 1$

 \rightsquigarrow Crude Monte Carlo sampling Y^i i.i.d. \mathbb{P}_Y

$$\mathbb{P}_{Y}\left(\frac{d\mathbb{P}_{X}}{d\mathbb{P}_{Y}} \ 1_{A}\right) = \mathbb{P}_{X}(A) \simeq \mathbb{P}_{X}^{N}(A) := \frac{1}{N} \sum_{1 \leq i \leq N} \frac{d\mathbb{P}_{X}}{d\mathbb{P}_{Y}}(Y^{i}) \ 1_{A}(Y^{i})$$

Optimal twisted measure = <u>Conditional distribution</u>

Variance =
$$0 \iff \mathbb{P}_Y = \Psi_{1_A}(\mathbb{P}_X) = \text{Law}(X \mid X \in A)$$

∜

Perfect or MCMC samplers =acceptance-rejection techniques BUT Very often with very small acceptance rates

Conditional distributions and Feynman-Kac models

Example : Markov chain models X_n restricted to subsets A_n

$$\mathbf{X} = (X_0, \ldots, X_n) \in \mathbf{A} = (A_0 \times \ldots \times A_n)$$

Conditional distributions

$$\operatorname{Law}\left(\mathbf{X} \mid \mathbf{X} \in \mathbf{A}\right) = \operatorname{Law}\left(\left(X_{0}, \ldots, X_{n}\right) \mid X_{p} \in A_{p}, \ p < n\right) = \mathbb{Q}_{n}$$

and

$$\operatorname{Proba}(X_{p} \in A_{p}, p < n) = \mathcal{Z}_{n}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Conditional distributions and Feynman-Kac models

Example : Markov chain models X_n restricted to subsets A_n

$$\mathbf{X} = (X_0, \ldots, X_n) \in \mathbf{A} = (A_0 \times \ldots \times A_n)$$

Conditional distributions

$$\operatorname{Law}\left(\boldsymbol{\mathsf{X}} \mid \boldsymbol{\mathsf{X}} \in \boldsymbol{\mathsf{A}}\right) = \operatorname{Law}(\left(X_0, \ldots, X_n\right) \mid X_p \in A_p, \ p < n\right) = \mathbb{Q}_n$$

and

$$\operatorname{Proba}(X_{p} \in A_{p}, p < n) = \mathcal{Z}_{n}$$

given by the Feynman-Kac measures

$$d\mathbb{Q}_n := rac{1}{\mathcal{Z}_n} \left\{ \prod_{0 \le p < n} G_p(X_p) \right\} d\mathbb{P}_n$$

with

$$\mathbb{P}_n = \operatorname{Law}(X_0, \dots, X_n) \quad \text{and} \quad G_p = 1_{\mathcal{A}_p}, \ p < n$$

Introduction

Feynman-Kac models

Nonlinear evolution equation Interacting particle samplers Continuous time models Particle estimates

Some rare event models

Stochastic analysis

・ロ> < 回> < 回> < 回> < 回> < 回

Feynman-Kac models (general $G_n(X_n)$ & $X_n \in E_n$)

Flow of *n*-marginals

$$\eta_n(f) = \gamma_n(f)/\gamma_n(1) \quad \text{with} \quad \gamma_n(f) := \mathbb{E}\left(f(X_n)\prod_{0 \le p < n} G_p(X_p)\right)$$

$$\Downarrow (\gamma_n(1) = \mathcal{Z}_n)$$

Nonlinear evolution equation :

$$\eta_{n+1} = \Psi_{G_n}(\eta_n) M_{n+1}$$

$$\mathcal{Z}_{n+1} = \eta_n(G_n) \times \mathcal{Z}_n$$

with the Markov transitions

$$M_{n+1}(x_n, dx_{n+1}) = \mathbb{P}(X_{n+1} \in dx_{n+1} \mid X_n = x_n)$$

Note : $[X_n = (X'_0, \dots, X'_n) \& G_n(X_n) = G'(X'_n)] \Longrightarrow \eta_n = \mathbb{Q}'_n$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□ ◆ ◇◇◇

Interacting particle samplers

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - のへで

⊃ Continuous time models ⊃ Langevin diffusions

$$X_n := X'_{[t_n, t_{n+1}[}$$
 & $G_n(X_n) = \exp \int_{t_n}^{t_{n+1}} V_s(X'_s) ds$

OR Euler approximations (Langevin diff. \rightsquigarrow Metropolis-Hasting moves) OR Fully continuous time particle models \rightsquigarrow Schrödinger operators

$$rac{d}{dt}\gamma_t(f)=\gamma_t(L_t^V(f)) \quad ext{with} \quad L_t^V=L_t'+V_t$$

$$\gamma_t(1) = \mathbb{E}\left(\exp\int_0^t V_s(X'_s)ds\right) = \exp\int_0^t \eta_s(V_s)ds \quad \text{with} \quad \eta_t = \gamma_t/\gamma_t(1)$$

⊃ Continuous time models ⊃ Langevin diffusions

$$X_n := X'_{[t_n, t_{n+1}[}$$
 & $G_n(X_n) = \exp \int_{t_n}^{t_{n+1}} V_s(X'_s) ds$

OR Euler approximations (Langevin diff. \rightsquigarrow Metropolis-Hasting moves) OR Fully continuous time particle models \rightsquigarrow Schrödinger operators

$$\frac{d}{dt}\gamma_t(f) = \gamma_t(L_t^V(f)) \quad \text{with} \quad L_t^V = L_t' + V_t$$

$$\gamma_t(1) = \mathbb{E}\left(\exp\int_0^t V_s(X'_s)ds\right) = \exp\int_0^t \eta_s(V_s)ds \quad \text{with} \quad \eta_t = \gamma_t/\gamma_t(1)$$

Master equation $\eta_t = \text{Law}(\overline{X}_t) \Rightarrow \frac{d}{dt}\eta_t(f) = \eta_t(L_{t,\eta_t}(f))$ (ex. : $V_t = -U_t \le 0$)

1

Genealogical tree evolution (N, n) = (3, 3)

Some particle estimates $(\delta_a(dx) \leftrightarrow \delta(x-a) dx)$

- Individuals ξ_n^i "almost" iid with law $\eta_n \simeq \eta_n^N = \frac{1}{N} \sum_{1 \le i \le N} \delta_{\xi_n^i}$
- Ancestral lines "almost" iid with law $\mathbb{Q}_n \simeq \frac{1}{N} \sum_{1 \le i \le N} \delta_{\text{line}_n(i)}$
- Normalizing constants

$$\mathcal{Z}_{n+1} = \prod_{0 \le p \le n} \eta_p(G_p) \simeq_{N\uparrow\infty} \mathcal{Z}_{n+1}^{N} = \prod_{0 \le p \le n} \eta_p^{N}(G_p) \quad \text{(Unbiased)}$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 ─ のへで

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

How to use the full ancestral tree model ?

$$G_{n-1}(x_{n-1})M_n(x_{n-1},dx_n) \stackrel{hyp}{=} H_n(x_{n-1},x_n) \nu_n(dx_n)$$

 \Rightarrow Backward Markov model :

$$\mathbb{Q}_{n}(d(x_{0},...,x_{n})) = \eta_{n}(dx_{n}) \underbrace{\mathbb{M}_{n,\eta_{n-1}}(x_{n},dx_{n-1})}_{\propto \eta_{n-1}(dx_{n-1}) H_{n}(x_{n-1},x_{n})} \dots \mathbb{M}_{1,\eta_{0}}(x_{1},dx_{0})$$

How to use the full ancestral tree model ?

$$G_{n-1}(x_{n-1})M_n(x_{n-1}, dx_n) \stackrel{hyp}{=} H_n(x_{n-1}, x_n) \nu_n(dx_n)$$

 \Rightarrow Backward Markov model :

$$\mathbb{Q}_{n}(d(x_{0},...,x_{n})) = \eta_{n}(dx_{n}) \underbrace{\mathbb{M}_{n,\eta_{n-1}}(x_{n},dx_{n-1})}_{\propto \eta_{n-1}(dx_{n-1}) H_{n}(x_{n-1},x_{n})} \dots \mathbb{M}_{1,\eta_{0}}(x_{1},dx_{0})$$

Particle approximation

$$\mathbb{Q}_n^{\mathsf{N}}(d(x_0,\ldots,x_n))=\eta_n^{\mathsf{N}}(dx_n) \mathbb{M}_{n,\eta_{n-1}^{\mathsf{N}}}(x_n,dx_{n-1})\ldots \mathbb{M}_{1,\eta_0^{\mathsf{N}}}(x_1,dx_0)$$

Ex.: Additive functionals $\mathbf{f}_{n}(x_{0},...,x_{n}) = \frac{1}{n+1} \sum_{0 \le p \le n} f_{p}(x_{p})$

$$\mathbb{Q}_{n}^{N}(\mathbf{f}_{n}) := \frac{1}{n+1} \sum_{0 \le p \le n} \eta_{n}^{N} \underbrace{\mathbb{M}_{n,\eta_{n-1}^{N}} \dots \mathbb{M}_{p+1,\eta_{p}^{N}}(f_{p})}_{\text{matrix operations}}$$

Introduction

Feynman-Kac models

Some rare event models

Self avoiding walks Level crossing probabilities Particle absorption models Quasi-invariant measures Doob *h*-processes Semigroup gradient estimates Boltzmann-Gibbs measures

Stochastic analysis

Self avoiding walks in \mathbb{Z}^d

Feynman-Kac model with

$$\mathbf{X}_{\mathbf{n}} = (X_0, \dots, X_n)$$
 & $G_n(\mathbf{X}_{\mathbf{n}}) = \mathbb{1}_{X_n \notin \{X_0, \dots, X_{n-1}\}}$

$\$

Conditional distributions

$$\mathbb{Q}_n = \operatorname{Law}\left(\left(\mathbf{X}_0, \dots, \mathbf{X}_n\right) \mid X_p \neq X_q, \ \forall 0 \leq p < q < n\right)$$

and

$$\mathcal{Z}_n = \operatorname{Proba} \left(X_p \neq X_q, \ \forall 0 \leq p < q < n \right)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Level crossing probabilities (1)

 $\mathbb{P}(V_n(X_n) \ge a)$ or $\mathbb{P}(X \text{ hits } A_n \text{ before } B)$

Level crossing at a fixed given time

$$\mathbb{P}(V_n(X_n) \ge a) = \mathbb{E}\left(f_n(X_n) \ e^{V_n(X_n)}\right)$$
$$= \mathbb{E}\left(f_n(\mathbf{X}_n) \ \prod_{0 \le p < n} G_p(\mathbf{X}_p)\right)$$

with

The Markov chain on transition space

 $\mathbf{X}_n = (X_n, X_{n+1})$ and $G_n(\mathbf{X}_n) = \exp \left[V_{n+1}(X_{n+1}) - V_n(X_n)\right]$

The test functions

$$f_n(\mathbf{X}_n) = \mathbbm{1}_{V_n(X_n) \geq a} e^{-V_n(X_n)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Level crossing probabilities (2)

• Excursion level crossing $A_n \downarrow$, with B non critical recurrent subset.

$$\mathbb{P}(X \text{ hits } A_n \text{ before } B) = \mathbb{E}\left(\prod_{0 \le p \le n} \mathbb{1}_{A_p}(X_{T_p})\right)$$

$$T_n := \inf \left\{ p \geq T_{n-1} : X_p \in (A_n \cup B) \right\}$$

Feynman-Kac model

$$\mathbb{E}\left(\prod_{0\leq p\leq n} 1_{A_p}(X_{T_p})\right) = \mathbb{E}\left(\prod_{0\leq p< n} G_p(\mathbf{X}_p)\right)$$

with

$$\mathbf{X}_n = (X_p)_{p \in [T_n, T_{n+1}]}$$
 & $G_n(\mathbf{X}_n) = 1_{A_{n+1}}(X_{T_{n+1}})$

Absorption models

Sub-Markov semigroups

$$Q_n(x, dy) = G_{n-1}(x) \ M_n(x, dy) \rightsquigarrow E_n^c = E_n \cup \{c\}$$

and

 $\mathcal{Z}_n = \operatorname{Proba}\left(T^{absorption} \geq n\right)$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Homogeneous models $(G_n, M_n) = (G, M)$

• Reversibility condition : $\mu(dx)M(x, dy) = \mu(dy)M(y, dx)$

 $\operatorname{Proba}\left(T^{\textit{absorption}} \geq n\right) \simeq \lambda^{n}$

with $\lambda = \text{top eigenvalue of}$

$$Q(x, dy) = G(x) M(x, dy)$$

- $Q(h) = \lambda h$
 - Quasi-invariant measure :

$$\mathbb{P}(X_n^c \in dx \mid T^{\text{absorption}} > n) \rightarrow_{n\uparrow} \frac{1}{\mu(h)} h(x) \mu(dx)$$

► Doob *h*-process *X^h* :

$$M^{h}(x, dy) = \frac{1}{\lambda} h^{-1}(x)Q(x, dy)h(y) = \frac{Q(x, dy)h(y)}{Q(h)(x)} = \frac{M(x, dy)h(y)}{M(h)(x)}$$

Homogeneous models $(G_n, M_n) = (G, M)$

$$\mathbb{Q}_n(d(x_0,\ldots,x_n))\propto \mathbb{P}((X_0^h,\ldots,X_n^h)\in d(x_0,\ldots,x_n))\ h^{-1}(x_n)$$

• Invariant measure $\mu_h = \mu_h M^h$ & normalized additive functionals

$$\overline{F}_n(x_0,\ldots,x_n)=\frac{1}{n+1}\sum_{0\leq p\leq n}f(x_p)\Longrightarrow \mathbb{Q}_n(\overline{F}_n)\simeq_n\mu_h(f)$$

• If $G = G^{\theta}$ depends on some $\theta \in \mathbb{R} \rightsquigarrow f := \frac{\partial}{\partial \theta} \log G^{\theta}$

$$\frac{\partial}{\partial \theta} \log \lambda^{\theta} \simeq_n \frac{1}{n+1} \frac{\partial}{\partial \theta} \log \mathcal{Z}_{n+1}^{\theta} = \mathbb{Q}_n(\overline{F}_n)$$

NB : Similar expression when M^{θ} depends on some $\theta \in \mathbb{R}$.

Semigroup gradient estimates

$$X_{n+1}(x) = \mathcal{F}_n(X_n(x), W_n) \quad (X_0(x) = x \in \mathbb{R}^d) \quad \rightsquigarrow \quad P_n(f)(x) := \mathbb{E}\left(f(X_n(x))\right)$$

First variational equation

$$\frac{\partial X_{n+1}}{\partial x}(x) = A_n(x, W_n) \frac{\partial X_n}{\partial x}(x) \quad \text{with} \quad A_n^{(i,j)}(x, w) = \frac{\partial \mathcal{F}_n^i(., w)}{\partial x^j}(x)$$

Random process on the sphere $U_0 = u_0 \in \mathbb{S}^{d-1}$

$$U_{n+1} = A_n(X_n, W_n)U_n/\|A_n(X_n, W_n)U_n\| = \frac{\frac{\partial X_n}{\partial x}(x) u_0}{\left\|\frac{\partial X_n}{\partial x}(x) u_0\right\|}$$

Feynman-Kac model $\mathcal{X}_n = (X_n, U_n, W_n)$ & $\mathcal{G}_n(x, u, w) = \|\mathcal{A}_n(x, w) \ u\|$

$$\nabla P_{n+1}(f)(x) \ u_0 = \mathbb{E}\left(\underbrace{\mathcal{F}(\mathcal{X}_{n+1})}_{\nabla f(\mathcal{X}_{n+1}) \ U_{n+1}} \ \underbrace{\prod_{0 \le p \le n}}_{\|\frac{\partial \mathcal{X}_n}{\partial x}(x) \ u_0\|}\right)$$

Boltzmann-Gibbs measures

$$\eta_n(dx) := rac{1}{\mathcal{Z}_n} e^{-\beta_n V(x)} \lambda(dx) \quad ext{with} \quad \beta_n \uparrow$$

• For any MCMC transition M_n with target η_n

$$\eta_n = \eta_n M_n$$

Updating of the temperature parameter

$$\eta_{n+1} = \Psi_{G_n}(\eta_n)$$
 with $G_n = e^{-(\beta_{n+1}-\beta_n)V}$

Proof : $e^{-\beta_{n+1}V} = e^{-(\beta_{n+1}-\beta_n)V} \times e^{-\beta_n V}$

Consequence :

$$\eta_{n+1} = \eta_{n+1} M_{n+1} = \Psi_{G_n}(\eta_n) M_{n+1}$$

and $(\beta_0 = 0)$ $\lambda \left(e^{-\beta_n V} \right) = \mathcal{Z}_n = \prod_{0 \le p < n} \eta_p(\mathcal{G}_p)$

Restriction models

$$\eta_n(dx) := rac{1}{\mathcal{Z}_n} \ \mathbf{1}_{\mathcal{A}_n}(x) \ \lambda(dx) \quad ext{with} \quad \mathcal{A}_n \downarrow$$

• For any MCMC transition M_n with target η_n

$$\eta_n = \eta_n M_n$$

Updating of the subset

$$\eta_{n+1} = \Psi_{G_n}(\eta_n)$$
 with $G_n = 1_{A_{n+1}}$

$$\mathsf{Proof}: \quad \mathbf{1}_{\mathcal{A}_{n+1}} = \mathbf{1}_{\mathcal{A}_{n+1}} \times \mathbf{1}_{\mathcal{A}_n}$$

Consequence :

$$\eta_{n+1} = \eta_{n+1}M_{n+1} = \Psi_{G_n}(\eta_n)M_{n+1}$$

and $(\lambda(A_0) = 1)$
$$\lambda(A_n) = \mathcal{Z}_n = \prod_{0 \le n \le n} \eta_p(G_p)$$

Product models

$$\eta_n(dx) := rac{1}{\mathcal{Z}_n} \left\{ \prod_{p=0}^n h_p(x) \right\} \ \lambda(dx) \quad \mathrm{with} \quad h_p \geq 0$$

- For any MCMC transition M_n with target $\eta_n = \eta_n M_n$.
- Updating of the product

$$\eta_{n+1} = \Psi_{G_n}(\eta_n)$$
 with $G_n = h_{n+1}$

Proof :
$$\left\{\prod_{p=0}^{n+1}h_p\right\} = h_{n+1} \times \left\{\prod_{p=0}^n h_p\right\}$$

Consequence :

$$\eta_{n+1} = \eta_{n+1} M_{n+1} = \Psi_{G_n}(\eta_n) M_{n+1}$$

and $(h_0 = 1)$ $\lambda\left(\prod_{p=0}^n h_p\right) = \mathcal{Z}_n = \prod_{0 \le p < n} \eta_p(G_p)$

Introduction

Feynman-Kac models

Some rare event models

Stochastic analysis

A brief review on genetic style algorithms Stochastic linearization models Current population models Particle free energy Genealogical tree models Backward particle models

Equivalent particle algorithms

Sequential Monte Carlo	Sampling	Resampling
Particle Filters	Prediction	Updating
Genetic Algorithms	Mutation	Selection
Evolutionary Population	Exploration	Branching
Diffusion Monte Carlo	Free evolutions	Absorption
Quantum Monte Carlo	Walkers motions	Reconfiguration
Sampling Algorithms	Transition proposals	Accept-reject-recycle

Equivalent particle algorithms

Sequential Monte Carlo	Sampling	Resampling
Particle Filters	Prediction	Updating
Genetic Algorithms	Mutation	Selection
Evolutionary Population	Exploration	Branching
Diffusion Monte Carlo	Free evolutions	Absorption
Quantum Monte Carlo	Walkers motions	Reconfiguration
Sampling Algorithms	Transition proposals	Accept-reject-recycle

More botanical names:

bootstrapping, spawning, cloning, pruning, replenish, multi-level splitting, enrichment, go with the winner, ...

1950 \leq Heuristic style algo. \leq 1996 \leq Particle Feynman-Kac models

Convergence analysis : CLT, LDP, \mathbb{L}_p -estimates, Empirical processes, Moderate deviations, propagations of chaos, exact weak expansions,

Concentration analysis = Exponential deviation proba. estimates

Stochastic linearization/Mean field particle models

• Discrete time models
$$(\eta_n = \operatorname{Law}(\overline{X}_n))$$

$$\eta_{n} = \eta_{n-1} \mathcal{K}_{n,\eta_{n-1}} \rightsquigarrow \text{transition } \xi_{n}^{i} \sim \mathcal{K}_{n,\eta_{n-1}^{N}} \left(\xi_{n-1}^{i}, dx_{n} \right)$$

$$\eta_{n}^{N} = \eta_{n-1}^{N} \mathcal{K}_{n,\eta_{n-1}^{N}} + \frac{1}{\sqrt{N}} W_{n}^{N}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Theo : $(W_n^N)_{n\geq 0} \to (W_n)_{n\geq 0} \perp$ centered Gaussian fields

Stochastic linearization/Mean field particle models

• Discrete time models
$$(\eta_n = \text{Law}(\overline{X}_n))$$

$$\eta_{n} = \eta_{n-1} K_{n,\eta_{n-1}} \rightsquigarrow \text{transition } \xi_{n}^{i} \sim K_{n,\eta_{n-1}^{N}} \left(\xi_{n-1}^{i}, dx_{n}\right)$$

$$\eta_{n}^{N} = \eta_{n-1}^{N} K_{n,\eta_{n-1}^{N}} + \frac{1}{\sqrt{N}} W_{n}^{N}$$

Theo : $(W_n^N)_{n\geq 0} \to (W_n)_{n\geq 0} \perp$ centered Gaussian fields

• Continuous time models $(\eta_t = \text{Law}(\overline{X}_t))$

$$\begin{aligned} \frac{d}{dt} \eta_t(f) &= \eta_t(L_{t,\eta_t}(f)) \rightsquigarrow \text{generator } \xi_t^i \sim L_{t,\eta_t^k} \\ d\eta_t^N(f) &= \eta_t^N(L_{t,\eta_t^N}(f)) \ dt + \frac{1}{\sqrt{N}} \ dM_t^N(f) \end{aligned}$$

Theo : $M_t^N(f) \rightarrow M_t$ Gaussian martingale with

$$d\langle M(f)\rangle_t = \eta_t(\Gamma_{L_{t,\eta_t}}(f,f)) dt$$

Current population models

Constants (c_1, c_2) related to (bias,variance), c universal constant \perp time. Test funct. $||f_n|| \le 1, \forall (x \ge 0, n \ge 0, N \ge 1)$.

The probability of the event

$$\left[\eta_n^N - \eta_n\right](f) \le \frac{c_1}{N} \left(1 + x + \sqrt{x}\right) + \frac{c_2}{\sqrt{N}} \sqrt{x}$$

is greater than $1 - e^{-x}$.

►
$$x = (x_i)_{1 \le i \le d} \rightsquigarrow (-\infty, x] = \prod_{i=1}^d (-\infty, x_i]$$
 cells in $E_n = \mathbb{R}^d$.
 $F_n(x) = \eta_n (1_{(-\infty, x]})$ and $F_n^N(x) = \eta_n^N (1_{(-\infty, x]})$

The probability of the following event

$$\sqrt{N} \|F_n^N - F_n\| \le c \sqrt{d (x+1)}$$

is greater than $1 - e^{-x}$.

Particle free energy models

Constants (c_1, c_2) related to (bias,variance), c universal constant \perp time $\forall (x \ge 0, n \ge 0, N \ge 1)$

Unbiased property

$$\mathbb{E}\left(\eta_n^N(f_n) \prod_{0 \le p < n} \eta_p^N(G_p)\right) = \mathbb{E}\left(f_n(X_n) \prod_{0 \le p < n} G_p(X_p)\right)$$

▶ For any $\epsilon \in \{+1, -1\}$, the probability of the event

$$\frac{\epsilon}{n}\log\frac{\mathcal{Z}_n^N}{\mathcal{Z}_n} \leq \frac{c_1}{N} \ \left(1 + x + \sqrt{x}\right) + \frac{c_2}{\sqrt{N}} \ \sqrt{x}$$

is greater than $1 - e^{-x}$.

note $(0 \le \epsilon \le 1 \Rightarrow (1 - e^{-\epsilon}) \lor (e^{\epsilon} - 1) \le 2\epsilon)$

$$e^{-\epsilon} \leq \frac{z^N}{z} \leq e^{\epsilon} \Rightarrow \left|\frac{z^N}{z} - 1\right| \leq 2\epsilon$$

Genealogical tree models := η_n^N (in path space)

Constants (c_1, c_2) related to (bias,variance), c universal constant \perp time \mathbf{f}_n test function $\|\mathbf{f}_n\| \leq 1, \forall (x \geq 0, n \geq 0, N \geq 1)$.

The probability of the event

$$\left[\eta_n^N - \mathbb{Q}_n\right](f) \leq c_1 \; rac{n+1}{N} \; \left(1 + x + \sqrt{x}\right) + c_2 \; \sqrt{rac{(n+1)}{N}} \; \sqrt{x}$$

is greater than $1 - e^{-x}$.

▶ *F_n* = indicator fct. **f**_n of cells in **E**_n = (ℝ^d₀ × ..., ×ℝ^d_n) The probability of the following event

$$\sup_{\mathbf{f}_{\mathbf{n}}\in\mathcal{F}_n}\left|\eta_n^N(\mathbf{f}_{\mathbf{n}})-\mathbb{Q}_n(\mathbf{f}_{\mathbf{n}})\right|\leq c\ (n+1)\ \sqrt{\frac{\sum_{0\leq p\leq n}d_p}{N}}\ (x+1)$$

is greater than $1 - e^{-x}$.

Backward particle models

Constants (c_1, c_2) related to (bias,variance), c universal constant \perp time. **f**_n normalized additive functional with $||f_p|| \le 1$, $\forall (x \ge 0, n \ge 0, N \ge 1)$

The probability of the event

$$\left[\mathbb{Q}_n^N-\mathbb{Q}_n
ight](ar{\mathbf{f}}_n)\leq c_1\;rac{1}{N}\;(1+(x+\sqrt{x}))+c_2\;\sqrt{rac{x}{N(n+1)}}$$

is greater than $1 - e^{-x}$.

▶ $\mathbf{f}_{a,n}$ normalized additive functional w.r.t. $f_p = \mathbf{1}_{(-\infty,a]}$, $a \in \mathbb{R}^d = E_n$.

The probability of the following event

$$\sup_{\boldsymbol{a}\in\mathbb{R}^d}\left|\mathbb{Q}_n^N(\mathbf{f}_{\mathbf{a},\mathbf{n}})-\mathbb{Q}_n(\mathbf{f}_{\mathbf{a},\mathbf{n}})\right|\leq c~\sqrt{\frac{d}{N}}(x+1)$$

is greater than $1 - e^{-x}$.