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Introduction

Many extreme value problems...

Reaction path with the lowest barrier in a complex landscape

Ground state in a disordered system

Problems of pinned interfaces,...

In many cases, one needs to find minimum or maximum values
among a set of random variables ⇒ statistics?
See, e.g., Bouchaud, Mézard, J. Phys. A (1997).

Difficulties

Presence of strong correlations, multiples scales,...

Use of renormalization group could be relevant
(but still difficult)

What about the simplest extreme value problem, with iid
random variables?
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Introduction

Standard results

Variables x1, . . . , xn drawn from cumulative distribution µ(x)
(called parent distribution)

Rescaled cumulative distribution of max(x1, . . . , xn)

Fγ(y) = exp[−(1 + γy)]−1/γ 1 + γy > 0

γ > 0: Fréchet distribution (power-law tail of parent dist.)

γ = 0: Gumbel distribution (faster than powel-law tail)

γ < 0: Weibull distribution (bounded variables)

Fisher, Tippett (1928); Gnedenko (1943); Gumbel (1958)
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Introduction

Motivation

Asymptotic distributions of extreme values of iid random
variables known for long, but strong finite-size effects, not
always easy to handle with standard probabilistic methods

Idea: Use the renormalization language as a convenient tool
to analyze fixed points and finite-size corrections, in spite of
the absence of correlations

Approach initiated in
Györgyi, Moloney, Ozogány, Rácz, PRL (2008)

Györgyi, Moloney, Ozogány, Rácz, Droz, PRE (2010)

Aim of the present contribution: reformulate the results using
a differential representation, which is more convenient
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Basic renormalization idea

Extreme value statistics

N iid random variables, cumulative distribution
µ(x) =

∫ x

−∞ ρ(x ′)dx ′

Cumulative distribution for the maximum value

Prob(max(x1, . . . , xN) < x) = Prob(∀i , xi < x) = µN(x)

Decimation procedure

Split the set of sufficiently large N random variables xi into
N ′ = N/p blocks of p random variables each

yj the maximum value in the j th block

max(x1, . . . , xN) = max(y1, . . . , yN′)

yj are also i.i.d. random variables, with a distribution µp(y)

µp(y) = µp(y)
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Renormalization operation

Raising to a power and rescaling

[R̂pµ](x) = µp
(

apx + bp
)

Necessity of scale and shift parameters ap and bp to lift
degeneracy of the distribution

Conditions to fix ap and bp to be specified later on

Parameterization of the flow

p considered as continuous rather than discrete

change of flow parameter p = es : distribution µ(x , s),
parameters a(s) and b(s)

Parent distribution µ(x) obtained for s = 0

µ(x , 0) = µ(x)
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Renormalization operation

Change of function

double exponential form

µ(x , s) = e−e−g(x ,s)

Link to the parent distribution: g(x , s = 0) = g(x)

Standardization conditions

Conditions to fix the parameters a(s) and b(s)

µ(0, s) ≡ e−1, ∂xµ(0, s) ≡ e−1

In terms of the function g(x , s)

g(0, s) ≡ 0, ∂xg(0, s) ≡ 1
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Renormalization operation

Renormalization of µ(x , s)

µ(x , s) ≡ [R̂sµ](x) = µe
s(

a(s)x + b(s)
)

Renormalization of g(x , s) = − ln[− lnµ(x , s)]

g(x , s) = g
(

a(s)x + b(s)
)

− s.

Very simple transformation: linear change of variable in the
argument and global additive shift.

However, one needs to determine a(s) and b(s).
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Differential representation

Iteration of the RG transformation

g(x , s +∆s) = [R̂∆sg ](x , s)

Infinitesimal transformation ∆s = ds

g(x , s + ds) = [R̂dsg ](x , s)

More explicitly, with a(ds) = 1 + γ(s)ds and b(ds) = η(s)ds:

g(x , s + ds) = g
(

(

1 + γ(s)ds
)

x + η(s)ds, s
)

− ds

where the functions γ(s) and η(s) are to be specified

Linearizing with respect to ds, we get

∂sg(x , s) =
(

γ(s)x + η(s)
)

∂xg(x , s)− 1
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Partial differential equation

Determination of γ(s) and η(s)

Standardiz. conditions g(0, s) ≡ 0 and ∂xg(0, s) ≡ 1 yield

η(s) ≡ 1

γ(s) = −∂2xg(0, s)

Partial differential equation of the flow

∂sg(x , s) = (1 + γ(s) x) ∂xg(x , s)− 1
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Fixed points of the flow

Stationary solution g(x , s) = f (x):

0 = (1 + γx)f ′(x)− 1 with γ = −f ′′(0)

Using the standardization condition f (0) = 0

f (x ; γ) =

∫ x

0
(1 + γy)−1dy =

1

γ
ln(1 + γx)

Fixed point integrated distribution

M(x ; γ) = e−e−f (x ;γ)
= e−(1+γx)−1/γ

Easy way to recover the well-known generalized extreme value
distributions, obtained here as a fixed line of the RG transformation
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Perturbations about a fixed point

Linear perturbations

Perturbation φ(x , s) introduced through

g(x , s) = f (x) + f ′(x)φ(x , s)

Linearized partial differential equation

∂sφ(x , s) = (1 + γx) ∂xφ(x , s)− γ φ(x , s)− x ∂2xφ(0, s)

Convergence properties to the fixed point distribution are
obtained from the analysis of this PDE
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Eigenfunctions

Perturbations of the form φ(x , s) = eγ
′s ψ(x)

Solution for the Weibull and Fréchet cases (γ 6= 0)

ψ(x ; γ, γ′) =
1 + (γ′ + γ)x − (1 + γx)γ

′/γ+1

γ′(γ′ + γ)

in the range of x such that 1 + γx > 0.

Solution for the Gumbel case (γ = 0)

ψ(x ; γ′) =
1

γ′2

(

1 + γ′x − eγ
′x
)
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Eigenfunctions

Empirical interpretation

N variables in the block ⇒ s = lnN

Convergence g(x , s = lnN) → f (x)

Corrections proportional to eγ
′s ∝ Nγ′

(if γ′ = 0: logarithmic convergence in N).

Interpretation of γ′ > 0? Are there unstable solutions?

⇒ Can we look at non-perturbative solutions?
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Non-perturbative solutions

Motivation
Unstable solutions around the fixed point may seem
counterintuitive: can we find an example of full RG trajectory
starting from an unstable direction?

Back to the equations: the Gumbel case

Equation to be solved

∂sg(x , s) = (1 + γ(s) x) ∂xg(x , s)− 1

Ansatz for the solution starting from f (x) = x

g(x , s) = x + ǫ(s)ψ
(

x ; γ′(s)
)

Same as linear perturbation, except that γ′ depends on s
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Illustration of the flow

Parameter space (ǫ, γ′)
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Evolution of the distributions

Starting close to the Gumbel distribution (γ′ = 2)... and coming
back to it (at γ′ = 0) after an excursion
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Generalization of standard extreme statistics

Raising the variables to an increasing power

Choose iid variables whose statistics depends on the sample
size n, for instance by raising x1, . . . , xn to a power qn

Question: statistics of the quantity max(xqn1 , . . . , x
qn
n )

Motivation: link with the Random Energy Model
Ben Arous et.al. (2005), Bogachev (2007)

Results

Emergence of new limit distributions, for q(n) ∼ nQ

Fγ,Q = exp

[

−

(

1−
Q

γ
ln(1 + γx)

)1/Q
]

Standard distributions recovered for Q → 0

Angeletti, Bertin, Abry, J. Phys. A (2012)
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Formal analogy between sums and extremes

Extreme value statistics for iid random variables

Relevant mathematical object: integrated distribution µ(x)

Integrated distribution of the maximum of N iid random
variables

µN(x) = µ(x)N

Linear rescaling of x to preserve the standardiz. conditions

Statistics of sums of iid random variables

Relevant mathematical object: characteristic function Φ(q)

Characteristic function for the sum of N iid random variables

ΦN(q) = Φ(q)N

Linear rescaling

Same formal structure, only the objects differ
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Renormalization transform for sums

Result for the characteristic function

Φ(q; γ) = e−|q|
−

1
γ

Characteristic function of the symmetric Lévy distribution, of
parameter α = −1/γ.

Here, one restriction: γ ≤ −1
2 , equivalent to 0 < α ≤ 2

Linear stability analysis (eigenfunctions, ...) can be performed
in the same way as for extreme value statistics

Bertin, Györgyi, J. Stat. Mech. (2010)
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Conclusion

On the present work

Renormalization is a convenient tool to analyze fixed points
and finite size corrections

Analysis of finite size corrections made easy by the use of
eigenfunctions

Can be applied to variants of the present problems, for
instance, statistics of max(xqn1 , . . . , x

qn
n )

Outlook

Is renormalization without correlation really renormalization?
Extension to correlated variables welcome... but yet unclear
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