
2009
Computer Exercises
Daniel Jost & Ralf Everaers

Session 1 : simple sampling

1 Calculation of π

Consider a circle of diameter d surrounded by a square of length l (l ≥ d) (see Fig.1). Random
coordinates within the square are generated. The value of π can be calculated from the fraction of
points that fall within the circle.

1. How can π be calculated from the fraction of poins that fall in the circle? Remark: the ”exact”
value of π can be computed numerically using π = 4 arctan(1).

2. Complete the Monte-Carlo program to calculate π using this method.

3. How does the accuracy of the result depend on the ration l/d and of the number of generated
coordinates? Derive a formula to calculate the standard deviation of the estimate of π.

4. Is it a good idea to calculate many decimals of π using this method?

2 2D-Ising model

In this model, N spins {Si = ±1} are arranged on a 2D-square lattice (each row and column contain
P sites, ie N = P 2) (see Fig.2). The hamiltonian of the system is given by

H = −J
∑
〈i,j〉

SiSj (1)

where J is the coupling constant and 〈i, j〉 represents the sum over the nearest neighbours with
periodic boundary condition. Onsager in 1944 solved analytically this model and found a critical
point at the temperature Tc ≈ 2.269J/kB. In the following, we assume J > 0 and we note T ′ =
kBT/J .

1. What are the maximal and minimal values for the total magnetization M =
∑

i Si and the
nearest-neighbour coupling NNC =

∑
〈i,j〉 SiSj for a system of N spins?

2. Complete the subroutine randomconfig.f90 to randomly generate a spin matrix and to compute
the corresponding M and NNC values. Remark: a spin matrix is generated by randomly
chosing between {−1, 1} for each lattice site.

3. How can one evaluate the density of state D(M,NNC) with simple sampling?

4. Complete the updating of D in main.f90.

5. How can one compute the thermodynamic average of a given variable X(M,NNC) at the
reduced temperature T ′ using D?

6. Why is it better to evaluate the root-mean squared magnetization M̄(T ′) =
√
〈M2〉 instead

of the mean magnetization 〈M〉?

1

d

l

Figure 1: a circle of diameter d surrounded
by a square of length l.

Figure 2: Example of a 4× 4 Ising configura-
tion.

7. Complete the subroutine rmsm.f90 to compute M̄(T ′) from D.

8. Using the program, evaluate and trace M̄(T ′) and D for a 8 × 8 system using 100, 1000 or
10000 random configurations.

9. What are the probabilities to generate a configuration with M = 0 or with M = Mmax?

10. Using the two previous questions, make comments on solving the 2D Ising model using simple
sampling.

3 3D Self-avoiding walks

We look at properties of a single chain molecule. We consider a molecule composed by N steps (or
N + 1 beads) making a self-avoiding walk on a 3D cubic lattice (see Fig.3). Each lattice site has
z = 6 neighbours. We are interested by the total number of different configurations NSAW (N) and
by the end-to-end root mean squared distance Rrms(N).

1. What is the number of configurations and the end-to-end root mean squared distance for an
ideal walk?

2. Complete the subroutine randomchain.f90 to generate a random SAW and to compute its
end-to end distance. Remark: a configuration is generated by iteratively growing the chain
from bead 1 to bead N + 1. At each step, a random neighbour is chosen among the z possible
directions. If the site is not occupied, the process continues otherwise the chain is throw out
and a new growing process begins. The self-avoidance checking is made using hash coding
techniques (see Annexe).

3. From the fraction of well-growth chains, how can one estimate NSAW (N)? Estimate the error
made after P growing trys.

4. How can one evaluate Rrms(N)? Estimate the error with M random chains.

5. Complete the computation of NSAW (N) and Rrms(N) in main.f90.

2

Figure 3: A self avoiding walk on a 2D square lattice for N = 6.

6. Trace NSAW (N) and Rrms(N) (up to N = 100). What happens for long chains? Any
comments? Remark: one can show that for a self-avoiding walk Rrms(N) ∼ N0.588 and
NSAW (N) ∼ µNN1/6 with µ = 4.68 for a cubic lattice.

Annexe - the method of hash-coding (Madras & Sokal. 1988. J. Stat. Phys.) : An array of M words is assigned, and

each position x is assigned a primary address h(x) in this array. Since in general M is much smaller than the number of possible

positions ,the ”hash function” h is necessarily many-to-one, i.e., many distinct positions may share the same primary address,

leading to the possibility of collisions. The various hash-coding algorithms are distinguished by the method they use to resolve

collisions, i.e., to decide where to store a position if its primary address happens to be occupied by some other position. One

of the simplest collision-resolution schemes, and the one we use, is linear probing: if the primary address h(x) is occupied, the

algorithm searches successively in addresses h(x) + 1, h(x) + 2 (modulo M) until it finds either the position x or an empty

slot. In the worst possible case, a single query or insertion into a hash table containing N entries could take a time of order N .

However, it can be shown that as long as the hash table does not get close to full (i.e., N does not get near M), then the average

time (i.e., if the points are randomly distributed) for a single query or insertion is of order 1. So the hash-coding method is far

more effective than the naive method for which a new position is compared to the other already former positions. In choosing the

hash function h, we want the image set h[x1, ..., xN] to be ”sparse”: that is, if xi happens to be close to xj , then we want h(xi)

to be far from h(xj). This is particularly important, since the occupied lattice sites in a self-avoiding walk are close together.

We used hash functions of the form h(xi,1.....xi,d) = (a1xi,1 + ... + adxi,d)modM where d is the lattice dimension, and, a1,...,

ad, M are chosen to be relatively prime and satisfy ak ≈ Mk/(d+1). Thus, the ak are all of different magnitude, which helps

ensure the desired behavior of h. [To understand this, think about why h(xi,1, ..., xi,d) = (xi,1 + ... + xi,d)modM is a bad hash

function.] In particular, because we are using linear probing, we want to avoid near-collisions as well as collisions; this is why

we insist on ak > 1 for all k.

3

