Rare switching events in non-stationary and nonMarkovian systems

N. Becker, R. Allen, P. R. ten Wolde

Computation of transition trajectories and rare events in
in non-equilibrium systems
Lyon, June 11-15, 2012

Rare events in non-equilibrium systems

- protein and DNA pulling
- polymer collapse under flow
- crystal nucleation under shear
- traffic jams
- (bio)polymer translocation
- DNA condensation
- switches in biochemical networks

Rare events in stationary, Markovian systems

- Mean waiting time much longer that duration of switching event itself
- Time-homogeneous Markov systems:
transitions are independent and intervals are uncorrelated and exponentially distributed

Non-equilibrium systems

- Dynamics do not satisfy detailed balance
- Stationary distribution is not known

Simulating rare events in non-equilibrium systems

- Biasing potentials cannot be used
- Problems with transition path sampling and transition interface sampling

C. Dellago, P. G. Bolhuis, F. S. Csajka \& D. Chandler, J. Chem. Phys. 108, 1964 (1998)
C. Dellago, P. G. Bolhuis \& P. L. Geissler, Adv. Chem. Phys. 123, 1 (2002)

Path sampling in non-equilibrium systems

- Often only transition rates between states are known
- Detailed balance is not satisfied
- Phase-space density is not known
- Cannot propagate backwards in time
- Cannot calculate weight of paths

Rare-event problem

Can we drive the system over the barrier by only propagating forward in time?

Forward-Flux Sampling

Forward-Flux Sampling

Forward-Flux Sampling

- Different versions:
- Static MC:
- Direct FFS (just shown)
- Branched-Growth (BG) FFS (PERM, Grassberger)
- Dynamic MC:
- Rosenbluth (RB) FFS
- FFS can be used to compute stationary distributions
- Committors can be extracted on the fly and used to identify reaction coordinates (Borrero \& Escobedo)

Review: Allen et al, JPCM (2009)

Forward-Flux Sampling

- Widely used:
- crystal nucleation and gas-liquid nucleation
- DNA condensation
- membrane pore formation
- translocation of DNA and proteins through pores
- protein folding
- droplet coalescence
- polymer collapse under flow
- diffusion-limited aggregation
- nucleosome dynamics
- switches in biochemical networks

Rare events in non-stationary and nonMarkovian systems

- Externally driven systems
- protein folding under force
- nucleation during temperature quench
- Robustness against transient perturbations
- power grid
- traffic jams
- biological systems
- (In) sensitivity to transient driving or pulses
- signaling networks, e.g. cell differentiation and cell cycle
- antibiotics
- Non-Markovian transitions

Resistance against antibiotics:
 A non-stationary rare event

Balaban et al., Science, 2004

Resistance against antibiotics: A non-stationary rare event

Balaban et al., Science, 2004

Resistance against antibiotics: A non-stationary rare event

Balaban et al., Science, 2004

Resistance against antibiotics: A non-stationary rare event

Balaban et al., Science, 2004

Switching of the bacterial flagellar motor: Non-Markovian dynamics

Howard Berg lab

Berry et al., Science 2010-100

Switching of the bacterial flagellar motor: Non-Markovian dynamics

Questions

- How do we describe these systems?
- Can we derive microscopic expressions in terms of correlation functions for the macroscopic rate constants and rate kernels?
- Can we simulate these non-stationary and non-Markovian systems efficiently?

Macroscopic description of two-state system

- Waiting time longer than transition time: two-state description

$$
\begin{aligned}
& \frac{\partial}{\partial t} P_{B}\left(t ; t^{\prime}, t^{\prime \prime}, \ldots\right)=\delta\left(t-t^{\prime}\right) k_{A B}\left(t^{\prime} \mid t^{\prime \prime}, \ldots\right) P_{A}\left(t^{\prime} ; t^{\prime \prime}, \ldots\right) \\
&-k_{B A}\left(t \mid t^{\prime}, t^{\prime \prime}, \ldots\right) P_{B}\left(t ; t^{\prime}, t^{\prime \prime}, \ldots\right) \\
& \frac{d}{d t} P_{B}(t)=\int_{t \leq t^{\prime} \leq t^{\prime \prime} \leq \ldots} \frac{\partial}{\partial t} P_{B}\left(t ; t^{\prime}, t^{\prime \prime}, \ldots\right) d t^{\prime} d t^{\prime \prime} \ldots
\end{aligned}
$$

- Eqs. cannot be solved in general

Chandler, JCP (1978)

- Experiment has to inform us about most meaningful model

Microscopic description

- Define macroscopic states in terms of microscopic indicator functions:

$$
-\ln [P(q)] \underset{q^{*}}{q}
$$

- Macroscopic rate constants are related to time derivative of:

$$
\begin{aligned}
C(t) & =\int d x_{0} d x_{t} \rho\left(x_{0}\right) p\left(x_{t} \mid x_{0}\right) h_{B}\left(x_{t}\right) \\
& =\left\langle h_{B}\left(x_{t}\right)\right\rangle_{0}
\end{aligned}
$$

q

Markov systems

- Experiment reveals that there exists a macroscopic time resolution Δt on which the propensity to switch is independent of the history:

$$
k_{A B}\left(t \mid t^{\prime}, t^{\prime \prime}, \ldots\right)=k_{A B}(t)
$$

- Rate equation:

$$
\frac{d}{d t} P_{B}(t)=k_{A B}(t) P_{A}(t)-k_{B A}(t) P_{B}(t)
$$

Markov systems

- Consider:

$$
\dot{C}(t)=\left\langle\dot{h}_{B}(t)\right\rangle_{A_{0}}
$$

- Insert:

$$
\begin{array}{r}
h_{A}(t-\Delta t)+h_{B}(t-\Delta t)=1 \\
h_{A}(t+\Delta t)+h_{B}(t+\Delta t)=1 \\
\dot{C}(t)=\left\langle h_{A}(t-\Delta t)\right\rangle_{A_{0}}\left\langle\dot{h}_{B}(t) h_{A}(t+\Delta t)\right\rangle_{A_{t-\Delta t}} \\
+\left\langle h_{A}(t-\Delta t)\right\rangle_{A_{0}}\left\langle\dot{h}_{B}(t) h_{B}(t+\Delta t)\right\rangle_{A_{t-\Delta t}} \\
+\left\langle h_{B}(t-\Delta t)\right\rangle_{A_{0}}\left\langle\dot{h}_{B}(t) h_{B}(t+\Delta t)\right\rangle_{B_{t-\Delta t}} \\
+\left\langle h_{B}(t-\Delta t)\right\rangle_{A_{0}}\left\langle\dot{h}_{B}(t) h_{A}(t+\Delta t)\right\rangle_{B_{t-\Delta t}} \\
\equiv j_{A A}(t)+j_{A B}(t)+j_{B B}(t)+j_{B A}(t)
\end{array}
$$

Markov systems

- If system is time reversible or time-homogeneous or memoryless on time scale Δt, then $j_{A A}(t)$ and $j_{B B}(t)$ are zero:

$$
\begin{aligned}
\dot{C}(t) & =\left\langle h_{A}(t-\Delta t)\right\rangle_{A_{0}}\left\langle\dot{h}_{B}(t) h_{A}(t+\Delta t)\right\rangle_{A_{t-\Delta t}} \\
& +\left\langle h_{B}(t-\Delta t)\right\rangle_{A_{0}}\left\langle\dot{h}_{B}(t) h_{A}(t+\Delta t)\right\rangle_{B_{t-\Delta t}} \\
& \simeq P_{A}(t)\left\langle\dot{h}_{B}(t) h_{B}(t+\Delta t)\right\rangle_{A_{t-\Delta t}}+P_{B}(t)\left\langle\dot{h}_{B}(t) h_{A}(t+\Delta t)\right\rangle_{B_{t-\Delta t}} \\
& =d P_{B}(t) / d t
\end{aligned}
$$

- Hence, time-dependent rate constants are given by:

$$
\begin{aligned}
& k_{A B}(t)=\left\langle\dot{h}_{B}(t) h_{B}(t+\Delta t)\right\rangle_{A_{t-\Delta t}} \\
& k_{B A}(t)=-\left\langle\dot{h}_{B}(t) h_{A}(t+\Delta t)\right\rangle_{B_{t-\Delta t}} \\
& \quad \text { Bennett, Chandler }
\end{aligned}
$$

Markov system with external driving

- Two-state system with driving force that varies on time scale τ_{ϕ}
- Markov description requires that $\tau_{\text {trans }}<\Delta t \ll \tau_{\text {rxn }}$
- Two simple scenarios:
- quasi-static case:

$$
\tau_{\text {trans }}<\Delta t<\tau_{\phi} \ll \tau_{\text {rxn }}: k(t)=k(\phi(t))
$$

- rapidly varying force:

$$
\tau_{\text {trans }}, \tau_{\phi}<\Delta t \ll \tau_{\text {rxn }}
$$

Markov system with external driving

- One-dimensional barrier with oscillatory force
- Quasi-static case:

$$
\tau_{\text {trans }}<\Delta t<\tau_{\phi} \ll \tau_{\text {rxn }}: k(t)=k(\phi(t))
$$

correlations persist and recrossing fluxes are non-zero

Non-Markov system: flagellar motor

- Randomly shuffling clockwise and counterclockwise intervals does not change power spectrum; moreover, power spectrum can be reproduced from waiting-time distributions only
- System is a time-homogeneous non-Markovian system: transitions are independent and the different intervals are temporally uncorrelated, but they are not exponentially distributed.
- Switching propensity depends only upon the time that has passed since the last switching event.

The flagellar motor

Albada, Tanase-Nicola, PRtW, Nat MSB (2009)

Non-Markov systems Macroscopic description

- Clock resetting:

$$
\frac{d}{d t} P_{B}(t)=\int_{t \leq t^{\prime}}\left[k_{A B}\left(t \mid t^{\prime}\right) P_{A}\left(t ; t^{\prime}\right)-k_{B A}\left(t \mid t^{\prime}\right) P_{B}\left(t ; t^{\prime}\right)\right] d t^{\prime}
$$

- $P_{A}\left(t ; t^{\prime}\right)$: Probability that the system is in A at time t and has switched into that state for the last time within an earlier time interval $\left(t^{\prime}, t^{\prime}+d t\right)$
- $k_{A B}\left(t \mid t^{\prime}\right)$: The propensity that the system switches from A to B at time t given that it has switched into A at time $t^{\prime}<t$ and is still in A at time t

Non-Markov systems microscopic description

- Need indicator function that measures time since last switching event:

$$
H_{X}\left(t, t^{\prime}\right) \equiv \prod_{t>t^{\prime \prime}>t^{\prime}} h_{X}\left(t^{\prime \prime}\right) ; H_{X}(t, t)=1
$$

- Relate macroscopic rate equation to:

$$
\begin{aligned}
\dot{h}_{B}(t) & =\dot{h}_{B}(t) \sum_{X=A, B} H_{X}(t, t) \\
& =\partial_{t} H_{B}\left(t, t_{0}\right)-\partial_{t} H_{A}\left(t, t_{0}\right) \\
& +\int_{t_{0}}^{t}\left[\partial_{t} \partial_{t^{\prime}} H_{B}\left(t, t^{\prime}\right)-\partial_{t} \partial_{t^{\prime}} H_{A}\left(t, t^{\prime}\right)\right] d t^{\prime}
\end{aligned}
$$

Non-Markov system microscopic description

- Microscopic expressions for $P_{B}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)$ and $k_{A B}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)$:

$$
\begin{aligned}
\partial_{t^{\prime}}\left\langle H_{B}\left(t, t^{\prime}\right)\right\rangle d t^{\prime} & =\left\langle H_{B}\left(t, t^{\prime}\right) \dot{h}_{B}\left(t^{\prime}\right)\right\rangle d t^{\prime} \\
& =P_{B}\left(t ; t^{\prime}\right) d t^{\prime} \\
\frac{\partial_{t} \partial_{t^{\prime}}\left\langle H_{B}\left(t, t^{\prime}\right)\right\rangle}{\partial_{t^{\prime}}\left\langle H_{B}\left(t, t^{\prime}\right)\right\rangle} & =\frac{\left\langle\dot{h}_{B}(t) H_{B}\left(t, t^{\prime}\right) \dot{h}_{B}\left(t^{\prime}\right)\right\rangle}{\left\langle H_{B}\left(t, t^{\prime}\right) \dot{h}_{B}\left(t^{\prime}\right)\right\rangle} \\
& =-k_{A B}\left(t \mid t^{\prime}\right)
\end{aligned}
$$

Non-Markov system microscopic description

- Integrate over transient crossings over the dividing surface:

$$
h_{B}(t ; \Delta t)=\theta\left[\int_{t-\Delta t}^{t} h_{B}\left(t^{\prime}\right) d t^{\prime}-\Delta t / 2\right]
$$

- Microscopic expressions for $P_{B}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)$ and $k_{A B}\left(\mathrm{t}, \mathrm{t}^{\prime}\right)$ depend on Δt :

$$
\begin{aligned}
P_{B}\left(t ; t^{\prime} ; \Delta t\right) d t^{\prime} & =\partial_{t^{\prime}}\left\langle H_{B}\left(t, t^{\prime} ; \Delta t\right)\right\rangle d t^{\prime} \\
k_{A B}\left(t \mid t^{\prime} ; \Delta t\right) & =-\frac{\partial_{t} \partial_{t^{\prime}}\left\langle H_{B}\left(t, t^{\prime} ; \Delta t\right)\right\rangle}{\partial_{t^{\prime}}\left\langle H_{B}\left(t, t^{\prime} ; \Delta t\right)\right\rangle}
\end{aligned}
$$

Non-Markov system microscopic description

- One-dimensional barrier problem where after a barrier-crossing event the other state becomes progressively more stable

How to simulate non-stationary and nonMarkovian rare events?

Non-Stationary Forward Flux Sampling

Non-Stationary FFS

- Approach the saddle by ratcheting (FFS)
- Trigger branching / pruning on crossing

Non-Stationary FFS

- Approach the saddle by ratcheting (FFS)
- Trigger branching / pruning on crossing

NS-FFS: flatPERM branching rule

- 'Branch uphill, prune downhill'
- Sampling uniformly by branching / pruning (flatPERM)

Prellberg, T. \& Krawczyk, J. PRL (2004); Grassberger, P. PRE (1997)

- Flat sampling of trajectory space Becker, Allen, PRtW, JCP (2012)

Bacteriophage- λ infection

Bacteriophage- λ infection

The toggle switch

- Toy model of the phage- λ genetic switch.
- Progress coordinate: total B monomers - total A monomers

$$
\lambda=[B]+2\left[B_{2}\right]+2\left[O B_{2}\right]-\left([A]+2\left[A_{2}\right]+2\left[O A_{2}\right]\right)
$$

Spontaneous transitions

brute force

NS-FFS

$\operatorname{Prob}(f l i p p e d ~ u n t i l ~ t=800)=.07 \%$

Spontaneous transitions

brute force

NS-FFS
$\operatorname{Prob}($ flipped until $t=800)=.07 \%$

Flipping the switch

mean-field forcing: $\gamma n_{R}^{\infty}=$ fixed

Flipping the switch

$$
\begin{array}{r}
\varnothing \xrightarrow{k_{R}} R \xrightarrow{\mu_{R}} \varnothing \\
R+A \xrightarrow{\gamma} R
\end{array}
$$

$$
\text { mean-field forcing: } \gamma n_{R}^{\infty}=\text { fixed }
$$

- New chemical species: $R(\sim$ RecA in phage $\lambda)$
- $\quad R$ degrades A monomers \rightarrow flips the switch from A to B

Flipping the switch with a ramp

- accumulation of R :

$$
\langle R(t)\rangle=n_{R}^{\infty}\left(1-e^{-\mu_{R} t}\right)
$$

- steady-state: $n_{R}^{\infty}=k_{R} / \mu_{R}$
- mean-field forcing: $\gamma n_{R}^{\infty}=$ fixed
- increasing fluctuations:

$$
n_{R}^{\infty}=100,10,1
$$

Flipping the switch with a ramp

- accumulation of R :

$$
\langle R(t)\rangle=n_{R}^{\infty}\left(1-e^{-\mu_{R} t}\right)
$$

- steady-state: $n_{R}^{\infty}=k_{R} / \mu_{R}$
- mean-field forcing: $\gamma n_{R}^{\infty}=$ fixed
- increasing fluctuations:

$$
n_{R}^{\infty}=100,10,1
$$

Flipping the switch with a pulse

- decaying R pulse:

$$
\langle R(t)\rangle=R_{0} e^{-\mu_{R}\left(t-t_{0}\right)} \Theta\left(t-t_{0}\right)
$$

- time-integrated bias:

$$
\gamma \int_{0}^{\infty}\langle R(t)\rangle d t=\text { fixed }
$$

- decreasing pulse duration:

$$
\mu_{R}^{-1}=100,1,0.1
$$

Flipping the switch with a pulse

- decaying R pulse:

$$
\langle R(t)\rangle=R_{0} e^{-\mu_{R}\left(t-t_{0}\right)} \Theta\left(t-t_{0}\right)
$$

- time-integrated bias:

$$
\gamma \int_{0}^{\infty}\langle R(t)\rangle d t=\text { fixed }
$$

- decreasing pulse duration:

$$
\mu_{R}^{-1}=100,1,0.1
$$

Summary

- Non-stationary rare events are omnipresent, interesting and relevant
- A non-Markovian state model can be a useful coarse-grained description
- NS-FFS is a novel method for enhanced sampling of non-stationary rare events.
- Outlook: Cell differentiation occurs via induced switching and is stable afterwards. How?

Becker, Allen, PRtW, JCP (2012)
Becker, PRtW, JCP (2012)

Extra slides

Microscopic expressions for rate functions

time-inhomogeneous Markov case:

$$
k_{A B}(t)=\left\langle\dot{h}_{B}(t) h_{B}(t+\Delta t) \mid h_{A}(t-\Delta t)\right\rangle
$$

non-Markovian case:

$$
\begin{aligned}
& h_{A}(t ; \Delta t)=\theta\left[\int_{t-\Delta t}^{t} h_{A}\left(t^{\prime}\right) d t^{\prime}-\Delta t / 2\right] \\
& H_{A}\left(t ; t^{\prime} ; \Delta t\right)=\prod_{t \geq t^{\prime \prime}>t^{\prime}} h_{A}\left(t^{\prime \prime} ; \Delta t\right) \\
& k_{A B}\left(t \mid t^{\prime}\right)=-\frac{\left\langle\partial_{\partial} \partial_{t^{\prime}} H_{A}\left(t ; t^{\prime} ; \Delta t\right)\right\rangle}{\left\langle\partial_{t^{\prime}} H_{A}\left(t ; t^{\prime} ; \Delta t\right)\right\rangle}
\end{aligned}
$$

NS-FFS algorithm

- Init. Weight histogram $H_{l i}=0$, tree count $S=0$, growing branch list $G=\{ \}$
- Run. Iterate until convergence:
- If G is empty, start a new trajectory with weight $w=1$ at $t=0$ and add it to G
- Pick and remove a trajectory from G
- Propagate to $t=T$, unless an interface is crossed; then:
- increase $H_{l i}$ by the current weight w
- draw a child number $n\left(S, H_{l i}\right)=0,1, \ldots$
- add n children with weight $\operatorname{wr}(n)$ to G.

Enhanced sampling in stationary state (FFS)

1. Simulate stationary distribution in A once and for all
2. Shoot short trajectories from each interface to the next

Allen et al, JCP 2006

Enhanced sampling in stationary state (FFS)

1. Simulate stationary distribution in A once and for all
2. Shoot short trajectories from each interface to the next

Enhanced sampling in stationary state (FFS)

1. Simulate stationary distribution in A once and for all
2. Shoot short trajectories from each interface to the next

Enhanced sampling in stationary state (FFS)

1. Simulate stationary distribution in A once and for all
2. Shoot short trajectories from each interface to the next

The toggle switch

- Toy model of the phage- λ genetic switch.
- Progress coordinate: total B monomers - total A monomers

$$
\lambda=[B]+2\left[B_{2}\right]+2\left[O B_{2}\right]-\left([A]+2\left[A_{2}\right]+2\left[O A_{2}\right]\right)
$$

Spontaneous transitions

brute force

NS-FFS

$\operatorname{Prob}(f l i p p e d ~ u n t i l ~ t=800)=.07 \%$

Spontaneous transitions

brute force

NS-FFS
$\operatorname{Prob}($ flipped until $t=800)=.07 \%$

Outlook

Waddington (1940s), e.g. S. Huang, Cell E Molecular Biology (2011)

Outlook

Waddington (1940s), e.g. S. Huang, Cell \& Molecular Biology (2011)

Outlook

Waddington (1940s), e.g. S. Huang, Cell \& Molecular Biology (2011)

