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Rare events in non-equilibrium systems

* protein and DNA pulling

* polymer collapse under flow

* crystal nucleation under shear
* traffic jams

* (bio)polymer translocation

* DNA condensation

e gswitches in biochemical networks
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Rare events in stationary, Markovian

systems
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* Mean waiting time much longer that duration of switching
event itself

* Time-homogeneous Markov systems:

transitions are independent and intervals are uncorrelated
and exponentially distributed
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Non-equilibrium systems

* Dynamics do not satisty detailed balance

e Stationary distribution is not known
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Simulating rare events in non-equilibrium
systems

* Biasing potentials cannot be used

* Problems with transition path sampling and transition
interface sampling

C. Dellago, P. G. Bolhuis, F. S. Csajka & D. Chandler, J. Chem. Phys. 108, 1964 (1998)
C. Dellago, P. G. Bolhuis & P. L. Geissler, Adv. Chem. Phys. 123, 1 (2002)
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Path sampling in non-equilibrium systems

* Often only transition rates between states are known
* Detailed balance is not satisfied

* Phase-space density is not known

* Cannot propagate backwards in time

* Cannot calculate weight of paths
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Rare-event problem
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Can we drive the system over the barrier by only propagating forward in time?

Monday, July 2, 12



Forward-Flux Sampling

4>

q
A
) ®
kap = —2 = 2L P(Ag|\) 9
ha ho
I Allen et al, PRL (2005); JCP (2006)
P(Ag|A1) = [] P(Aig1lA) x P(AB|An)
1=1

T. S. van Erp, D. Moroni & P. G. Bolhuis, J. Chem. Phys. 118, 7762 (2003)
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Forward-Flux Sampling

e Different versions:

e Static MC:;

* Direct FFS (just shown)
* Branched-Growth (BG) FFS (PERM, Grassberger)

* Dynamic MC:
e Rosenbluth (RB) FFS

* FFS can be used to compute stationary distributions

* Committors can be extracted on the fly and used to identify
reaction coordinates (Borrero & Escobedo)

Review: Allen et al, JPCM (2009)
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Forward-Flux Sampling

Widely used:

crystal nucleation and gas-liquid nucleation

DNA condensation

membrane pore formation

translocation of DNA and proteins through pores

protein folding

droplet coalescence

polymer collapse under flow
diffusion-limited aggregation
nucleosome dynamics

switches in biochemical networks

Review: Allen et al, JPCM (2009)
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Rare events in non-stationary and non-

Markovian systems

Externally driven systems

e protein folding under force

* nucleation during temperature quench

Robustness against transient perturbations

* power grid

* trafficjams

* biological systems

(In) sensitivity to transient driving or pulses

* signaling networks, e.g. cell differentiation and cell cycle

antibiotics

Non-Markovian transitions
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Resistance against antibiotics:
A non-stationary rare event

Survival fraction

Time on ampicillin (h)

Balaban et al., Science, 2004
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Resistance against antibiotics:
A non-stationary rare event
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Balaban et al., Science, 2004
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Resistance against antibiotics:
A non-stationary rare event
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Text

Survival fraction

Balaban et al., Science, 2004
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Switching of the bacterial flagellar motor:
Non-Markovian dynamics

Howard Berg lab N 1 OO'W“T“J'N*‘ J W.’I\‘h‘.q :"#"mﬁf
U ! " |
5 0 I
Q \ /
7 | |
| =
Berry et al., Science 2010 -100 i nnch iy
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Switching of the bacterial flagellar motor:

Probability density

Non-Markovian dynamics

CW bias = 0.1
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Questions

* How do we describe these systems?

* Can we derive microscopic expressions in terms of
correlation functions for the macroscopic rate constants and

rate kernels?

* Can we simulate these non-stationary and non-Markovian
systems etficiently?

Monday, July 2, 12



Macroscopic description of two-state

system
q
t
* Waiting time longer than transition time: two-state description
8 ! 41 / A /. 41!
aPB(t;lt ) =0t —kag'|t, .. PA(t;t",. )
—kpa(t|t', ", .. \Pg(t;t',t", ...)
d 0
— Pp(t) :/ — Pg(t;t',¢",...)dt"dt" . ...
* Egs. cannot be solved in general Chandler, JCP (1978)

* Experiment has to inform us about most meaningful model
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Microscopic description

* Define macroscopic states in terms of microscopic indicator

functions:
| | -In[P(g)]
hA(ft) — 9_(1* — C](Zl?t)_,
hp(x:) = 0lq(xs) — q7|.

*

q q

* Macroscopic rate constants are related to time derivative of:

C(t) = / dzodzsp(10)p(a |20 ) s (2
= (hp(x¢))o

o]
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Markov systems

* Experiment reveals that there exists a macroscopic time

resolution At on which the propensity to switch is
independent of the history:

kag(tlt', ", ...) = kap(t)

e Rate equation:

d

- Pp(t) = kap(t)Pa(t) — kpa(t) Ps(1)
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Markov systems

e (Consider:

(hi (1) A,

C(t)

e Insert:
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Markov systems

* If system is time reversible or time-homogeneous or
memoryless on time scale At, then jaa(t) and jpa(t) are zero:

) Ao thB(t)ha(t + At))a,_4,
) a0 (hB(t)ha(t + Ab)) g, 4,
~ Pa(t)(hp(t)hp(t + AD) a,_5, + Pe(t)(hp(t)ha(t + At)) B, _a,

* Hence, time-dependent rate constants are given by:

kap(t) = (hp(t)hp(t + At) 4, .

kpa(t) = —(hp(t)ha(t + At))p,_,,-
Bennett, Chandler
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Markov system with external driving

* Two-state system with driving force that varies on time scale 7

* Markov description requires that Ttrans < At << Tyxn

* Two simple scenarios:
* quasi-static case:

Tirans < At < Ty << Toxn & k(E) = k(@(t))

* rapidly varying force:

Ttranss T¢ < Al << Trxn
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Markov system with external driving

* One-dimensional barrier with oscillatory force

 (uasi-static case:

Terans < At < Ty << Toxn © k() = k(o(1))
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Non-Markov system: flagellar motor

0 1 Time (s) 2 3 Count

5 100 i M = CW
= o ( il ' 1 —F
©

2 0 il o | 200

Q. ! 4 |
) | | .

-100; ?Mf,l"‘,-uu‘ Ay ”m'»‘f "w,“i"l' I"ls' e “fg’ CCW

Randomly shuffling clockwise and counterclockwise intervals does not
change power spectrum; moreover, power spectrum can be reproduced from
waiting-time distributions only

System is a time-homogeneous non-Markovian system: transitions are
independent and the different intervals are temporally uncorrelated, but they
are not exponentially distributed.

Switching propensity depends only upon the time that has passed since the
last switching event.
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The flagellar motor
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Non-Markov systems
Macroscopic description

* (lock resetting:

%PB(t) - /t<t, kap(t|t")Pa(t;t') — kpa(tlt) Pp(t;t)]dt’

o+ Pal(t; t/) : Probability that the system is in A at time ¢
and has switched into that state for the last time within
an earlier time interval (', t'+dt)

/ . .

o« kap(tit') : The propensity that the system switches
from A to B at time ¢ given that it has switched into A at
time t'< t and is still in A at time ¢
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Non-Markov systems
microscopic description

* Need indicator function that measures time since last switching event:

Hx(t,t)= || hx(®"); Hx(t,t)=1

>t >t/

* Relate macroscopic rate equation to:

hi(t) = hp(t Z Hx (t,t)

— 8tHB (t, t()) — atHA(t, t())

t
/ 0.0y Hp (t,t") — 0:0p Ha(t,t")]dt’

to

Monday, July 2, 12



Non-Markov system
microscopic description

Microscopic expressions for Pa(t,t") and kag(t,t'):

Op (Hp(t,t"))dt' = (Hg(t, t"hg(t"))dt
= Pg(t;t")dt’,

0.0p (Hp(t,t"))  (hp(t)Hp(t,t)hs(t'))

Oy (Hp(t,t))  (Hg(t,t")hg(t'))
= —kap(t|t)
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Non-Markov system
microscopic description

* Integrate over transient crossings over the dividing surface:

t

he(t; At) = 9[/ hp(t)dt' — At/2]
A glasses, Chandler et al.

* Microscopic expressions for Pg(t,t’) and kag(t,t’) depend on At :

Pp(t;t'; At)dt' = 0y (Hp(t,t'; At))dt,

0,0y (Hp(t,t': At))

kap(t[t’; At) = Oy (Hp(t,t'; At))
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Non-Markov system
microscopic description

* One-dimensional barrier problem where after a barrier-crossing
event the other state becomes progressively more stable
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How to simulate non-stationary and non-
Markovian rare events?

Non-Stationary Forward Flux Sampling
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Non-5Stationary FFS

A A
B
C
A /\’\/\
| | 1 )
0 T t

* Approach the saddle by ratcheting (FFS)

* Trigger branching/pruning on crossing
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Non-5Stationary FFS

AA
B
Pl
C
A e
1 | )
0 T t

* Approach the saddle by ratcheting (FFS)

* Trigger branching/pruning on crossing
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NS-FFS: flatPERM branching rule

1 1 )
0 T t

* ‘Branch uphill, prune downhill’
e Sampling uniformly by branching/pruning (flatPERM)

Prellberg, T. & Krawczyk, J. PRL (2004); Grassberger, P. PRE (1997)

* Flat sampling of trajectory space Becker, Allen, PRtW, JCP (2012)
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Bacteriophage-A infection
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Bacteriophage-A infection
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The toggle switch

@(_.. O+ A, = 0A,
:‘o: O—-0+A
COJE' ® OAy — OAy + A
\ Z (B) — 8 A—Q

* Toy model of the phage-A genetic switch.

* Progress coordinate: total B monomers - total A monomers

A = [B] + 2[By] 4 2[OB,] — ([A] + 2[A5] + 2[0A,))

e.g. Allen et al, [CP 2006
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Spontaneous transitions

brute force NS-FES

space-time histograms space-time histograms
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o
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0 200 400 600 800 1000 0 200 400 600 800 1000

Prob(flipped until t = 800) = .07%
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Spontaneous transitions

brute force NS-FES

100 .
10 le-01
1e-01 2 le-02 2
S le-03 §
S
le-04 5 18055
1le-06
] 1le-05 o0
0 200 400 600 800 000 €706
time

Prob(flipped until t = 800) = .07%
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Flipping the switch

S

~T 1(aA)
R
—-> .

-
e @ °

mean-field forcing: yng = fixed
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Flipping the switch

----------------

® -
% (_/ \ o & RE &
T (AA)
1 lo %: RLANR
L L
Voo s mean-field forcing: yng = fixed

* New chemical species: R (~ RecA in phage 1)

* Rdegrades A monomers — flips the switch from A to B
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Flipping the switch with a ramp

* accumulation of R :
(R(t)) = ng (1 —e =)
* steady-state: ng = kgr/ug
* mean-field forcing: yny = fixed

* increasing fluctuations:
ng = 100,10,1

100
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Flipping the switch with a ramp

e accumulation of R ;
(R(t)) = ng (1 — e HrY)

» steady-state: nf = kr/ug

* mean-field forcing: yny = fixed © oof

* increasing fluctuations:
ng = 100,10,1
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Flipping the switch with a pulse

* decaying R pulse:
(R(t)) = Roe MR @(t — 1)
* time- mtegrated bias:
0% / = fixed
. decreasmg pulse duration:

Uzt =100,1,0.1

(@) 101f
a: 1071k
102k NN
0 100 200 500

t[kl]
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Flipping the switch Wlth a pulse

(b) 6ol
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* decaying R pulse:
(R(t))

* time- mtegrated bias:

7/ )) dt = fixed

. decreasmg pulse duration:

Uzt =100,1,0.1
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Summary

* Non-stationary rare events are omnipresent, interesting and relevant

* A non-Markovian state model can be a usetul coarse-grained
description

e NS-FFSis a novel method for enhanced sampling
of non-stationary rare events. signal

e  Qutlook: Cell differentiation
occurs via induced switching
and is stable afterwards. How?

Becker, Allen, PRtW, JCP (2012) i

Becker, PRtW, JCP (2012) ReP=1x | Rrob

Red blood
cells lymphocyte

B g
| NN
| f
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Extra slides

Monday, July 2, 12



Microscopic expressions for rate functions

time-inhomogeneous Markov case:
kap(t) = (hp(t)hp(t + At)|ha(t — At))

non-Markovian case:

ha(tA8) = 0[[1 \ ha(t')dt — At/2]
Ha(t;t; At) = T[Tisprsp ha(t7; At)

_ {99 Ha(tt'00))
kap(tlt') = =53, 0, wn)
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NS-FFS algorithm

»  Init. Weight histogram Hj; = 0, tree count S =0,
growing branch list G = {}

»  Run. Iterate until convergence:

»  If G is empty, start a new trajectory with weight w =1
att=0and add it to G

»  Pick and remove a trajectory from G

»  Propagate to t = T, unless an interface is crossed; then:
» increase H;; by the current weight w
» draw a child number n(S, H;) =0, 1, ...

» add n children with weight wr(n) to G.
back
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Enhanced sampling in stationary state (FFS)

A o .
________ A A A b &
........ stationary resefvoir, ,ﬂA(X)
........................ r

state x

¥ N

1. Simulate stationary distribution in A once and for all

2. Shoot short trajectories from each interface to the next

Allen et al, [CP 2006
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Enhanced sampling in stationary state (FFS)

TN A

stationary reservoir, p(x)

>
state x

1. Simulate stationary distribution in A once and for all

2. Shoot short trajectories from each interface to the next

Allen et al, [CP 2006
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Enhanced sampling in stationary state (FFS)

,;?‘f .

stationary reservoir, p(x)

>
state x

1. Simulate stationary distribution in A once and for all

2. Shoot short trajectories from each interface to the next

Allen et al, [CP 2006
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Enhanced sampling in stationary state (FFS)

,;?‘f .

stationary reservoir, p(x)

>
state x

v

1. Simulate stationary distribution in A once and for all

2. Shoot short trajectories from each interface to the next

Allen et al, [CP 2006
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The toggle switch

@(_.. O+ A, = 0A,
:‘o: O—-0+A
COJE' ® OAy — OAy + A
\ Z (B) — 8 A—Q

* Toy model of the phage-A genetic switch.

* Progress coordinate: total B monomers - total A monomers

A = [B] + 2[By] 4 2[OB,] — ([A] + 2[A5] + 2[0A,))
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Spontaneous transitions

brute force NS-FES

space-time histograms space-time histograms
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Prob(flipped until t = 800) = .07%
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Spontaneous transitions

brute force NS-FES
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Outlook

Waddington (1940s), e.g. S. Huang, Cell & Molecular Biology (2011)
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