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The model

XY Hamiltonian :

H =
∑p2

i
2

+
J
2k

∑
i ,j

εi ,j [1− cos(θi − θj)]

where:
{pi ; θi} ∈ Ω = [−∞;∞]N × (0; 2π]N

εi,j =

{
1 i , j connected
0 i , j otherwise

k =

∑
i>j εi,j

N

J > 0 ferromagnetic
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More in detail

Adiacency matrix εi,j

Symmetric matrix which encodes the information about the spins connections.

εi,j =

{
1 i , j connected
0 i , j otherwise

⇒ Ex : full coupling =

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

Degree of a vertex k

Number of connections per spin.
k =

∑
j εi,j =

∑
i>j εi,j
N
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What if the spins are fully coupled?

εi ,j = 1 =⇒ Hamiltonian Mean Field Model1

H =
∑p2i

2 + J
2N
∑

i ,j [1− cos(θi − θj)]

We define a global order parameter: Magnetisation{
mx = 1

N

∑
cosθi

my = 1
N

∑
sinθi

=⇒
∣∣∣ ~M∣∣∣ =

√
m2

x + m2
y
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1Antoni, Ruffo, Phys. Rev. E Vol.52, 2361-2374
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From nearest neighbours coupling to the full coupling regime

We define a dilution parameter γ

Links per spin: k = 22−γNγ−1

1 ≤ γ ≤ 2

0 1 1 1
1 0 1 1
1 1 0 1
1 1 1 0

=⇒
0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

γ = 2⇒ k = N γ = 1⇒ k = 2
full coupling ⇒ nearest neighbours coupling
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Low dilution values: approaching the 1-D topology

For γ < 1.5:

We integrated numerically the Hamilton equations for the dynamics and we
considered the equilibrium magnetisation

〈∣∣∣ ~M∣∣∣〉.
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The residual magnetisation vanishes
with size ⇒No phase transition

of second order type

To control the eventual presence of a

Kosterlitz-Thouless phase transition,
we considered the correlation function:

cj =
1
N

∑N
i=1 cos(θi − θ(i+j) mod N)
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High dilution values: the mean field phase transition

For γ > 1.5 :

The equilibrium magnetisation
〈∣∣∣ ~M∣∣∣〉 recovers the mean field phase

transition in the thermodynamic limit.
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γ = 1.75
γ = 1.6 To ensure the reaching of the

equilibrium state, we controlled the
scaling of the magnetisation variance:

σ2 =
〈
M2 − 〈M〉2

〉
∼ 1

N
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What for γc = 1.5?

γc = 1.5

Critical value for the passage between short and low range regimes.
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For γc = 1.5 it exists an
energy range 0.4 . ε ≤ 0.75
in which:
The magnetisation shows

important fluctuations.
It doesn’t reach the
equilibrium on the timescales
considered.

These effects are size
independent.
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The low temperatures approximation

We considered an approximated Hamiltonian:

cos(θi − θj) ≈ 1− (θi − θj)2
2

⇒ H ≈
∑

i

p2
i
2

+
J
4k

∑
i ,j

εi ,j(θi − θj)2

Since at equilibrium {θi , pi} are Gaussian distributed variables:

θi =
N∑

k=1

αk(t) cos(
2πki
N

+ φk)=⇒

pi =
N∑

k=1

α̇k(t) cos(
2πki
N

+ φk)

where φk are randomly distributed phases on the circle.
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An approximation for the magnetisation

Injecting the waves representation in the Hamiltonian and averaging on
the random phases:

α̈k = −ω2
kαk = −(1− λk)αk

where {λk}, k ∈ [1,N] are the eigenvalues of the matrix εi,j
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ωk and αk are related by the
equipartition of energy:

α2
kω

2
k ≈ 2T

N
Hence for the magnetisationa〈∣∣∣ ~M∣∣∣〉 in the low temperatures
regime:

log(
〈∣∣∣ ~M∣∣∣〉) ≈ −

∑
k
α2

k
4 ⇒〈∣∣∣ ~M∣∣∣〉 ≈ exp(− T

2N

∑
k

1
1−λk

)

aLeoncini, Verga, Ruffo Phys.Rev.E 57

(1998)
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A way to control the randomness

Having considered the model on the regular lattice topology, we
introduce now a controlled amount of randomness in the network.

Watts-Strogatz model2:

We rewired the links according to a rewiring probability p

p=0 −−−−−−−− 99Kp=1
regular lattice→random network

2Watts, Strogatz, Nature 393 (1998), 440–442.
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The Small World network

It exist an interval for p in which the network has:
short average path length: rewiring introduces shortcuts
high clustering

In this regime, the network is a Small World network.
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Randomness induces the phase transition

Two limit cases:

p ≈ 0 ∪ γ < 1.5: regular lattice configuration⇒no phase
transition
p = 1 ∪ γ ∈ (1; 2]: random network configuration ⇒mean
field phase transition recovered in TD limit3

What about the Small World regime?

The mean field phase transition arises for intermediate values of p(
p ≥ 1

N

)
, even for low γ.

3Ciani et al, Nonlinear Physical Science, 2011, Vol.0, 83-132
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The dependence of εc on the rewiring probability

Moreover the transition energy εc depends on p:
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Figure: γ = 1.25 , a) p = 0.001, b) p = 0.005, c) p = 0.05
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Conclusions...

We studied the XY model for various dilutions on a regular
lattice: for low dilutions it doesn’t undergo a phase transition,
while, in the high dilution regime, the mean field transition of
the magnetisation arises.
The XY model on a regular lattice shows a non trivial
behaviour when the dilution overcomes the threshold γ = 1.5.
Considering the complex network, the mean field phase
transition is recovered even for low dilution values when the
network is in the Small World regime (p > 1

N )
The transition energy εc varies in correspondence to the
randomness: εc ∼ log(p)
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....and perspectives...

Further developments :

99K Analytic proof of critical point for the dilution γ = 1.5.
99K Analysis of the interplay between γ and the rewiring probability p.
99K Deeper understanding of the mechanism underlying the logarithmic

dependence of εc .
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