PHYSICS: PARADIGM OF CURRENT (or TRAffic)

DISRETETIME: $J_{N}^{e} \equiv \frac{1}{N} \sum_{i=1}^{N} f\left(X_{i}, X_{i+2}\right)$

CONTINUOUS TIME:
Θ Ch Maluv Tenp Contine
Θ Diffonin ${ }^{\text {PRoCESSS }} \boldsymbol{T}$

$$
J_{T}^{*}=\frac{1}{T} \int_{0}^{T}\left(f\left(x_{s}\right) \cdot d x_{s}+g\left(x_{s}\right) d s\right)
$$

EX: - ENTAOPY (REATIUN: $f(x, y)=\ln \frac{W(x, y)}{W / z x)}$

- curacmi of particles
\Rightarrow CAN WE GO BEYOND?
AT DIMEETE TIME \& YES: m-WORC empiriilal deñity.

Sanov theorem for independents bits: Combinatorial approach

- 2 states 0 and $1, P(0)=p_{0}$ and $P(1)=p_{1}=1-p_{0}$
- Sequence of n bits : $[x]=011100100 \ldots$
- Empirical density ("type" in statistics) : $\rho_{n}^{e}(0)=\frac{\sharp 0 \text { in }[x]}{n}$ and $\rho_{n}^{e}(1)=\frac{\sharp 1 \mathrm{in}[x]}{n}$
- Typical behavior : $\rho_{n}^{e}(0) \rightarrow p_{0}$ and $\rho_{n}^{e}(1) \rightarrow p_{1}$.
- Untypical behavior $P\left(\rho_{n}^{e}(0)=\mu_{0}, \rho_{n}^{e}(1)=\mu_{1}\right)=\frac{n!}{\left(n \mu_{0}\right)!\left(n \mu_{1}\right)!}$ $p_{0}^{n \mu_{0}} p_{1}^{n \mu_{1}}$
with $\mu_{0}+\mu_{1}=1$.
- Stirling :
$\ln \left(P\left(\rho_{n}^{e}(0)=\mu_{0}, \rho_{n}^{e}(1)=\mu_{1}\right)\right)=n \mu_{0} \ln p_{0}-n \mu_{0}+n \mu_{1} \ln p_{1}-n \mu_{1}+$ $n \ln n-n-n \mu_{0} \ln n \mu_{0}+n \mu_{0}-n \mu_{1} \ln n \mu_{1}+n \mu_{1}=-n\left(\mu_{0} \ln \frac{\mu_{0}}{p_{0}}+\mu_{1} \ln \frac{\mu_{1}}{p_{1}}\right)$

$$
\Rightarrow I(\mu)=\mu_{0} \ln \frac{\mu_{0}}{p_{0}}+\mu_{1} \ln \frac{\mu_{1}}{p_{1}} \equiv S(\mu / p)
$$

Methods : Not rigorous mathematics...

La physique théorique est devenue un vaste hôpital psychiatrique où ce sont les fous qui ont pris le pouvoir. La théorie des cordes? Une physique sans expérience et une mathématique sans rigueur. Jean Marie Souriau (1922-2012(March)) :

Positive description :
Physics is to mathematics as \varnothing is to masturbation. Richard Feymann
(Totally?) No rigorous prove of Donsker-Varadhan at the Physical way

- Functional Laplace transformation
$\left\langle\delta\left(\rho_{1, T}^{e}-\rho\right)\right\rangle=\left\langle\int d V \exp \left(-\left(T V, \rho_{1, T}^{e}-\rho\right)\right)\right\rangle=$ $\int d V \exp \left(T \int d x V(x) \rho(x)\right)\left\langle\exp \left(-\int_{0}^{T} d t V\left(X_{t}\right)\right)\right\rangle$
- Feymann-Kac formulae :
$\left\langle\exp \left(-\int_{0}^{T} d t V\left(X_{t}\right)\right)\right\rangle=\int \rho_{0}(d x) d y \exp (T(L-V))(x, y)=$
$\int \rho_{0}(d x) d y \exp (-T(-L+V))(x, y) \approx \exp \left(-T \lambda_{+}[V]\right)$ where we define $\lambda_{+}[V]=\inf [$ Spectre $(-L+V)]$
- Saddle point:
$\left\langle\delta\left(\rho_{1, T}^{e}-\rho\right)\right\rangle \asymp \exp \left(T \inf _{[V] \in R}\left(\int d x V(x) \rho(x)-\lambda_{+}[V]\right)\right)$ then
$I[\rho]=-\inf _{[V] \in R}\left(\int d x \rho(x)\left(V(x)-\lambda_{+}[V]\right)\right)$.
- $\rho_{+}[V]$ the eigenvalue associated $\lambda_{+}[V]$, by Perron Frobenius theorem
$\rho_{+}[V](x) \geq 0$ for all x and $\lambda_{+}[V] \geq 0 . \Rightarrow$
$(-L+V) \rho_{+}[V]=\lambda_{+}[V] \rho_{+}[V]$ then $V-\lambda_{+}[V]=\left(\rho_{+}[V]\right)^{-1} L \rho_{+}[V]$
- Then we obtain the rate function

$$
\begin{aligned}
& I[\rho]=-\inf _{[u] \in R^{+}}\left(\int d x \rho(x)\left(u^{-1} L u\right)(x)\right)= \\
& \quad-\inf _{[f] \in R}\left(\int d x \rho(x)(\exp (-f) L \exp f)(x)\right)
\end{aligned}
$$

LEVEL 2,5
LEVEL of TMÉ TURAEMTS

$$
\begin{aligned}
& \mu_{N}^{E, 2}=1 \sum_{N}^{N} \sum_{i=8}^{N} \delta x_{i} x_{i+2} \quad \text { CTMC: } P_{T}^{\prime}(x): \frac{1}{T} \int_{0}^{T} \delta x_{g}(x) \\
& \downarrow_{U_{\text {Inv }} \otimes M}^{\downarrow} \\
& I[\mu]=\sum_{x, y} \mu(x, y) \ln \left[\frac{\mu(x, y)}{\left(\frac{\mu(x, y))}{2} M(x, y)\right.}\right]
\end{aligned}
$$

METHUDOF PROVE
(1) Contraction level. 3 (whíno) \longrightarrow HARS (NOT GMINUH)
(2) LEVEL. FOR $\left.y_{n}:\left(x_{n}, x_{n R E}\right) D Z\right) \longrightarrow \mathrm{NO}^{\circ}$
(3) GARNER-ELLIS (A) FEYMNN, WC \longrightarrow YES (WHEFE?)
(DEN HoLLAMDER)
(4) T

m. words
(1) YES
(2) YES
(3) No
(4) त YES

NO ! ! ! !
(1) No
(2) No ? ?
(3) No ?
(4) No No

LEVEL 2.9999....

NEW METHOD:
(5) m-1 STEP MARKLV

$$
\sigma_{F}^{e, m-1} \equiv \frac{1}{T} \sum_{\substack{i=0 \\ N_{T}=m+1}}^{N_{F-m+2}} \delta_{i, \ldots, \ldots} x_{i+m-2}\left(T_{i+m, s}, T_{i+m-2}\right)
$$

$$
\rho_{T}^{c, m}=\frac{1}{T} \sum_{i=0}^{\pi_{T-m+1}} \delta_{x_{i}, \ldots, x_{i+m-1}} x_{i}
$$

Level 2.99999.... : Context

- X_{t} Continuous time Markov chain with transition rate $W(x, y)$ and escape rate $\lambda(x)=\sum_{y} W(x, y)$ on a state space V.
- $\rho_{\text {inv }}$ its invariant density.
- \mathbb{P}_{x} the law of the process with initial condition x, which is a distribution in the Skorohod space $D\left(\mathbb{R}_{+}, V\right)$
- X_{n} Included Markov chain.

Markov matrix: $M(x, y)=\frac{W(x, y)}{\lambda(x)}$.
Invariant density $\pi_{i n v}$ and it is easy to see that

$$
\pi_{\text {inv }}(x)=\frac{\rho_{\text {inv }}(x) \lambda(x)}{\langle\lambda\rangle_{\rho_{\text {inv }}}}
$$

- We note the sequence of time of jump of the process $T_{1}, T_{2}, \ldots, T_{n}, \ldots$

Level 2.99999.... : Empirical density

$$
\rho_{t}^{e, m} \equiv \frac{1}{t} \sum_{i=0}^{N_{t}-m+1} \delta_{X_{i}, X_{i+1}, \ldots, X_{i+\boldsymbol{m}-\mathbf{1}}}
$$

and

$$
\sigma_{t}^{e, m} \equiv \frac{1}{t} \sum_{i=0}^{N_{t}-m+1} \delta_{X_{i}, X_{i+1}, \ldots, X_{i+m-1}}\left(T_{m+i}-T_{m+i-1}\right)
$$

By exemple,

$$
\rho_{t}^{e, 2} \equiv \frac{1}{t} \sum_{i=0}^{N_{t}-1} \delta_{X_{i}, X_{i+1}}
$$

is the "empirical jump", and

$$
\sigma_{t}^{e, 1} \equiv \frac{1}{t} \sum_{i=0}^{N_{t}}\left(T_{1+i}-T_{i}\right) \delta_{X_{j}}
$$

is the empirical density.

Main result

The family of probability measure $\left\{\mathbb{P}_{x} \circ\left(\sigma_{t}^{e, m-1}, \rho_{t}^{e, m}\right)^{-1}\right\}_{t>0}$ satisfy as $t \rightarrow \infty$ a large deviation principle, uniformly with respect to x, with rate function :

$$
\begin{array}{r}
I[\sigma, \rho]=\sum_{x_{1}, \ldots, x_{m}} \sigma\left(x_{1}, \ldots, x_{m-1}\right) W\left(x_{m-1}, x_{m}\right)-\rho\left(x_{1}, \ldots, x_{m-1}, x_{m}\right)+ \\
\rho\left(x_{1}, \ldots, x_{m}\right) \ln \left[\frac{\rho\left(x_{1}, \ldots x_{m}\right)}{\sigma\left(x_{1}, \ldots, x_{m-1}\right) W\left(x_{m-1}, x_{m}\right)}\right]
\end{array}
$$

if

$$
\sum_{x} \rho\left(x, x_{2}, \ldots x_{m}\right)=\sum_{x} \rho\left(x_{2}, x_{3}, \ldots, x_{m}, x\right)
$$

Typical behavior of the empirical density

- $\rho_{t}^{e, m}\left(x_{1}, \ldots, x_{m}\right)=\frac{N_{t}-m}{t} \frac{1}{N_{t}-m} \sum_{i=0}^{N_{t}-m+1} \delta_{X_{i}, \ldots, X_{i+m-1}}\left(x_{1}, \ldots, x_{m}\right)$
$-\frac{N_{t}}{t}=\sum_{x, y} \rho_{t}^{e, 2}(x, y)$ and then $\frac{N_{t}}{t} \rightarrow \sum_{x, y} \rho_{i n v}(x) W(x, y)=\langle\lambda\rangle_{\rho_{i n v}}$
- Typical behavior of $\rho_{t}^{e, m}$:
$\rho_{t}^{e, m}\left(x_{1}, \ldots, x_{m}\right) \rightarrow\langle\lambda\rangle_{\rho_{i n v}} \pi_{i n v}\left(x_{1}\right) M\left(x_{1}, x_{2}\right) M\left(x_{2}, x_{3}\right) \ldots M\left(x_{m-1}, x_{m}\right)$ which can be also written with the transition rate

$$
\rho_{t}^{e, m}\left(x_{1}, x_{2}, \ldots, x_{m}\right) \rightarrow \rho_{i n v}\left(x_{1}\right) W\left(x_{1}, x_{2}\right) \frac{W\left(x_{2}, x_{3}\right)}{\lambda\left(x_{2}\right)} \ldots \frac{W\left(x_{m-1}, x_{m}\right)}{\lambda\left(x_{m-1}\right)}
$$

- Typical behavior of $\sigma_{t}^{e, m}$ is
$\sigma_{t}^{e, m}\left(x_{1}, x_{2}, \ldots, x_{m}\right) \rightarrow \rho_{i n v}\left(x_{1}\right) \frac{W\left(x_{1}, x_{2}\right)}{\lambda\left(x_{2}\right)} \frac{W\left(x_{2}, x_{3}\right)}{\lambda\left(x_{3}\right)} \ldots \frac{W\left(x_{m-1}, x_{m}\right)}{\lambda\left(x_{m}\right)}$
NOT AT ALL GENERIC FORM: TILTING IMPOSSIBLE TO DO IN THE CLASS OF MARKOV PROCESS.

$m-1$-step pure jump process

Such a process is given by 3 object :

- A $m-1$ point initial density $\pi_{0}\left(x_{0}, x_{1}, \ldots, x_{m-2}\right)$
- A transition "matrix" of the included $m-1$ step markov chain $M\left(x_{0}, x_{1}, \ldots, x_{m-2} \rightarrow y\right)$
- A escape rate function of the state $x_{0}, x_{1}, \ldots, x_{m-2}$:

$$
\lambda\left(x_{0}, x_{1}, \ldots, x_{m-2}\right)
$$

"Transition rate" of the process are $W\left(x_{0}, x_{1}, \ldots, x_{m-2}, y\right)=\lambda\left(x_{0}, x_{1}, \ldots, x_{m-2}\right) M\left(x_{0}, x_{1}, \ldots, x_{m-2} \rightarrow y\right)$ Trajectory with n jump, which pass toward the point $x_{0}, x_{1}, \ldots, x_{n}$ and which jump at sequence of time $t_{1}, t_{2}, \ldots, t_{n}$, the law of the process on the interval $[0, T]$,

$$
\begin{aligned}
& d P_{T}=\pi_{0}\left(x_{0}, x_{1}, x_{m-2}\right) M\left(x_{0}, \ldots, x_{m-2} \rightarrow x_{m-1}\right) M\left(x_{1}, \ldots, x_{m-1} \rightarrow x_{m}\right) \\
& \ldots M\left(x_{n-m+1}, x_{n-m+2}, \ldots, x_{n-1} \rightarrow x_{n}\right) \\
& \lambda\left(x_{0}, x_{1}, x_{m-2}\right) \exp \left(-\lambda\left(x_{0}, x_{1}, x_{m-2}\right) t_{1}\right) d t_{1} \\
& \lambda\left(x_{1}, x_{2}, \ldots, x_{m-1}\right) \exp \left(-\lambda\left(x_{1}, x_{2}, \ldots, x_{m-1}\right)\left(t_{2}-t_{1}\right)\right) d t_{2} \ldots \\
& \exp \left(-\lambda\left(x_{n-m+1}, x_{n-m+2}, \ldots, x_{n-1}\right)\left(T-t_{n}\right)\right) d t_{n} .
\end{aligned}
$$

Open issue : GC in disordered system

Large deviations for a random walk in a random environment, Ann. Prob. 22 (1994), A.Greven, F.Den Hollander.

- Random environment $w_{k}, k \in Z$ iid $\in[0,1]$ random variable with distribution α
- Discrete random walk X_{n} in Z with

$$
P_{w}\left(X_{n+1}=x \pm 1 \mid X_{n}=x\right)=\left\{\begin{array}{c}
w_{n} \\
1-w_{n}
\end{array}\right.
$$

- Large deviation for the speed of the w-conditioned random walk:

$$
P_{w}\left(\frac{X_{n}}{n}=v\right) \asymp \exp (-n I(v))
$$

- $I(v)$ is deterministic
- $I(v)$ verify the "GC" symmetry

$$
I(v)=I(-v)+v\left\langle\ln \left(\frac{1-w}{w}\right)\right\rangle
$$

