

Mésocentres 2016: GlusterFS

De la "paillasse" au "génie des procédés"

"La simplicité est la sophistication extrême..."

Léonard de Vinci

Emmanuel Quémener

L'articulation PSMN/CBP à l'ENS-Lyon (et à la FLMSN)

Centre Blaise Pascal

- « Maison de la simulation »
- Hôtel à projets & conférences
- Hôtel à formations
- Un centre d'essais

Pôle Scientifique de Modélisation Numérique

- Méso-centre Equip@Meso
 - 6.4k cœurs, 1.5PB stockage
- Une usine de production

Stockage distribué & Centre Blaise Pascal Déjà une longue histoire...

- Petit retour en arrière :
 - Idée lancinante depuis plus une dizaine d'années :
 - Proposition à l'ENS de Cachan en 2005
 - Faisabilité opérationnelle à l'époque difficile
 - Enquête besoins de stockage « recherche » de l'ENS-Lyon 2010T1
 - Conclusion : très onéreux de tout mettre en iSCSI propriétaire
 - Exploration d'autres solutions plus internalisées
 - Plus d'informations : JRES 2011, besoins de stockage
 - Étude via Distonet (Distonet pour Distributed Storage Network)
 - Exploration sur Cluster de AoE, iSCSI, CephFS, XtreemFS et GlusterFS

DiStoNet : résultats encourageants Mais quelle solution *Hic et Nunc* ?

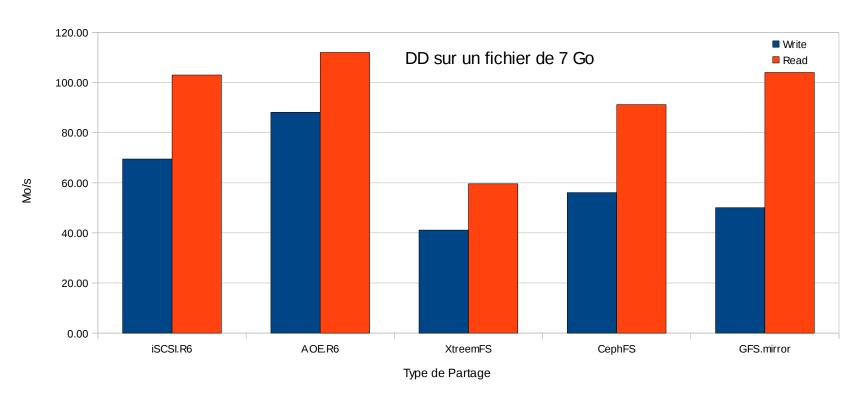
- CephFS: pas encore au point...
- XtreemFS: peu maintenu
- AoE : simple mais peu secure
- ISCSI: élaboré mais maintenance difficile...
- GlusterFS: en attendant d'avoir mieux...

GlusterFS : du KISS à l'état pur ! Au moins pour l'installation...

- KISS: Keep It Simple Stupid
- Simple à installer :
 - Côté serveur :
 - Pas de patch noyau profond (imposant la distribution GNU/Linux)
 - Pas de module à installer (imposant souvent au moins la version de noyau)
 - Pas de module à compiler (imposant une gestion au changement de noyau)
 - Juste un paquet à installer : apt-get install glusterfs-server suffit !
 - Côté client :
 - Pareil que pour le serveur
 - Juste un paquet à installer : apt-get install glusterfs-client

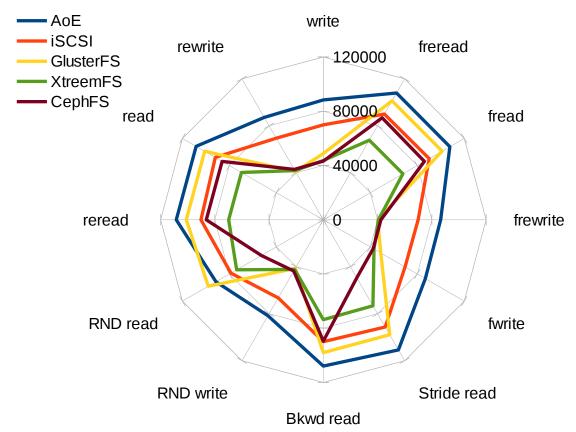
De l'installation à la configuration Un parcours du combattant ?

- Côté serveur : 4 étapes
 - Définition des « voisins » (ceux qui participent au stockage)
 - Définition du volume en précisant :
 - Son nom : (pas trop tarabiscoté quand même)
 - Son type : équivalent RAID0 ou RAID1, ou RAID10
 - Son type de réseau : TCP/IP ou RDMA (InfiniBand)
 - Ses « participants » : chaque voisin et le point de montage
 - Activation du volume (et c'est tout)...
- Côté client :
 - Montage du volume (via client Fuse, facteur limitant)



Des comparatifs en 2011 GlusterFS vs les autres...

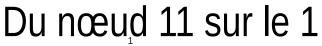
Un dd sur des blocs de 8 machines en GigE, W/R

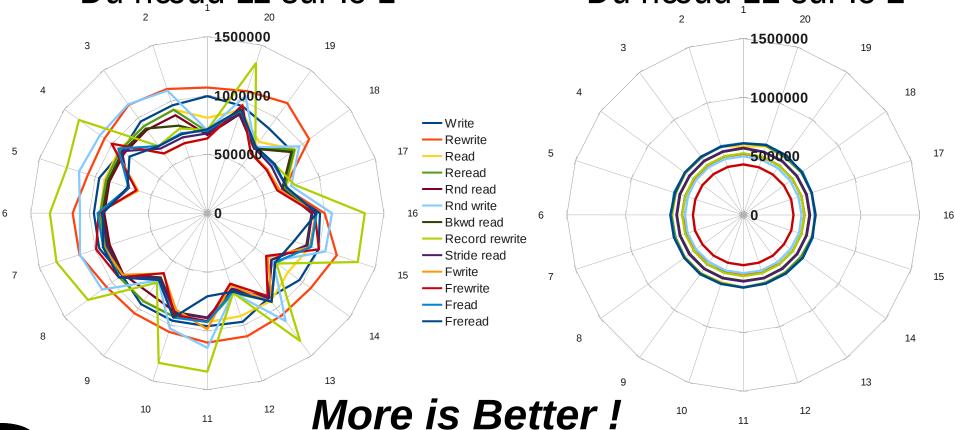


Des comparatifs en 2011 GlusterFS vs les autres...

Un IOzone3 sur des blocs de 8 machines en GigE

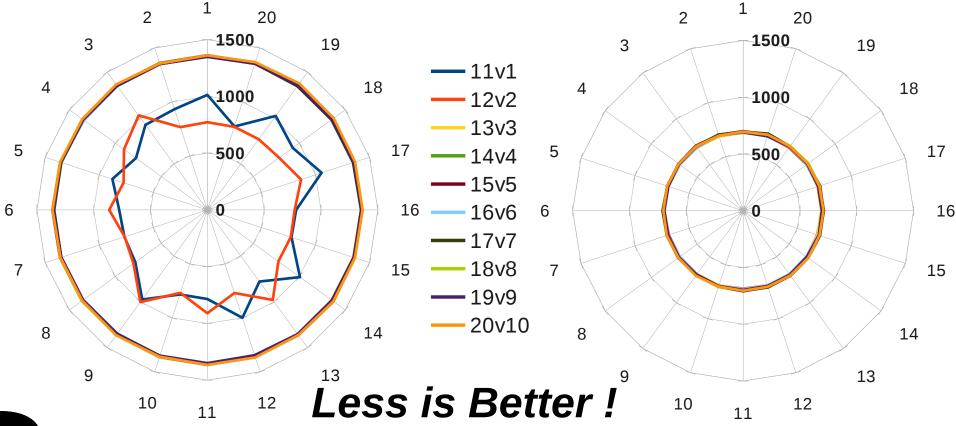
Étude pour le PSMN en 2013 Là où la reproductibilité s'invite...

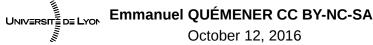

- Objectif:
 - Évaluation de GlusterFS comme /scratch de haute performance
- Plate-forme d'expérimentation : 20 nœuds + infrastructure
 - 20 nœuds Sandy Bridge 2x8 cœurs avec 64 GB de RAM
 - Un système SIDUS Debian Wheezy
 - Interconnexion InfiniBand FDR 56 Gb/s
 - Pas de latence disque : RamDisk BRD/Ext2 et TMPFS de 60 GB
 - 10 paires GlusterFS: 1 serveur sur RamDisk, 1 client
 - Usage de IOZone3 : 13 tests de lecture/écriture
 - 20 expériences pour un échantillon statistique représentatif



Étude pour le PSMN en 2013 Des comportements « étranges »

Du nœud 12 sur le 2

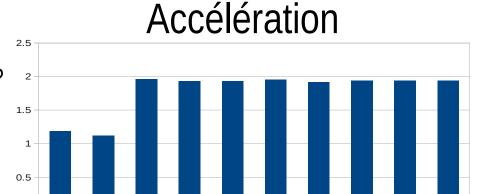


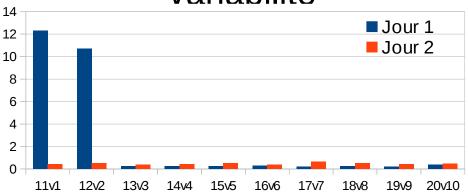


Étude pour le PSMN en 2013 Et une variabilité reproductible!

Pour les 10 couples avant

Pour les 10 couples après




Étude pour le PSMN en 2013 GlusterFS : au-delà du stockage !

- Deux questions :
 - Comment multiplier par 2 la vitesse ?
 - Comment diviser de 20 à 30 sa variabilité ?
- La réponse :
 - Optimiser le réseau ? Non
 - Optimiser les noyaux des OS ? Non
 - Changer les paramètres du BIOS ? OUI !!!
 - BIOS des nœuds 1 & 2 en Max
 Performance
 - BIOS des nœuds 3 à 20 par défaut
- Solution : uniformiser les BIOS
 - en Maximum Performance!

Implémentation GlusterFS/PSMN

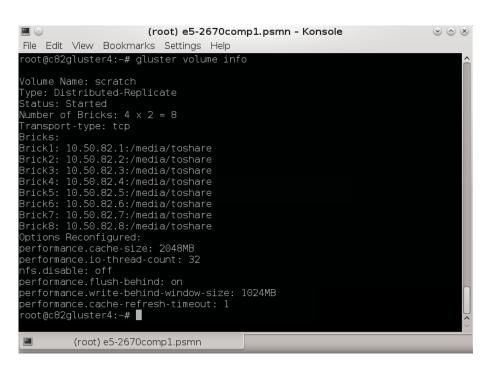
Objectif:

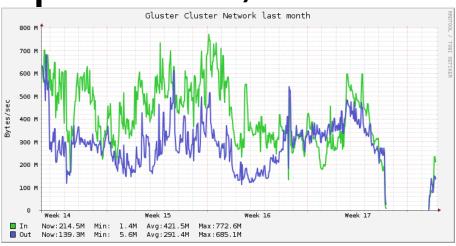
- Utiliser tous les disques disponibles pour du stockage distribué
- Exploiter l'Infiniband FDR 56 Gb/s

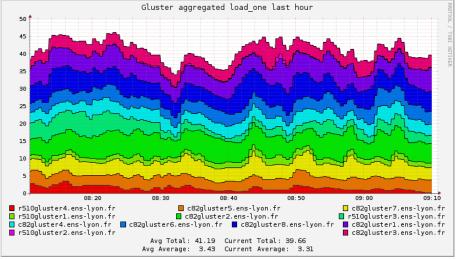
• Implémentation :

- Tous les disques : ZFSonLinux RAIDz1 pour le stockage de données
- Système distant avec persistance : démarrage iSCSI
 - Création d'une matrice et clonage sous ZFSonLinux (snapshot & clone)

Configuration: 8 nœuds c8220XD pour 250 nœuds


- Stockage: 15 disques durs de 1TB (5 internes + 12 externes)
- Puissance : E5-2670 16 cœurs à 2.6GHz & 64GB de RAM





GlusterFS au PSMN La conf' & la perf' : pas mal, non ?

GlusterFS pour la biologie ou le cauchemar se « repeat* »

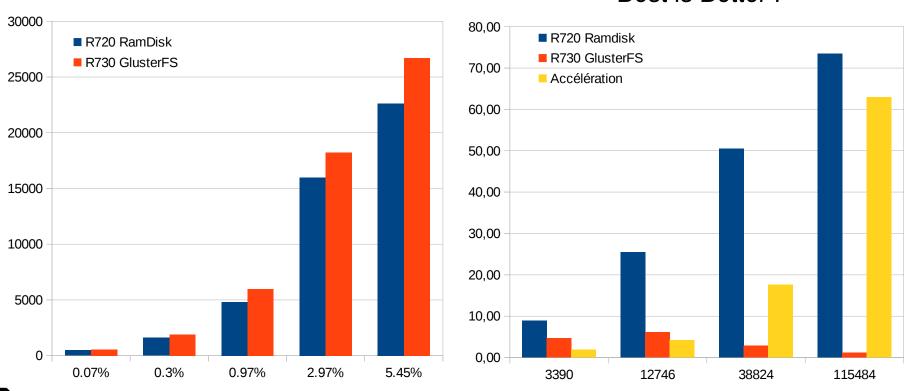
- Faire tourner la suite Repeat(Masker|Modeler)
 - Processus de (3|6) « produits » très hétérogènes
 - A petite échelle (portable ou station de travail) : OK
 - A plus grande échelle, passage au PSMN : KO
 - Plantage du serveur NFS (avec un Loïs « zorgieusement désappointé »)
- Exploration du « comportement » au CBP
 - Lancement sur station de travail, disque SSD
 - Lancement sur nœud de cluster, espace GlusterFS (un serveur)
 - Lancement sur serveur rapide, espace Ramdisk

GlusterFS pour la biologie Lorsque les I/O font leur loi...

2013	Bases	Sequences	Files	User	Elapsed	Input/Ouput
Pelodiscus	2202483752	19904	309531	620394	394995	2073771400
Tetraodon	358618246	27	403873	1040280	453677	1684136336
Killifish	1230898532	6012	376817	773775	531665	2531555536
2015						
Amphiprion	870234352	1081012	1193669	1244091	1036729	530305664
Roussette	4311024850	3502619	743440	1662646	1906300	271617672

En regardant plus finement avec « /usr/bin/time »

	/I				
2013	User	System	Elapsed	Input/Ouput	Data Rate
Pelodiscus	620394	2209	394995	2073771400	5250
Tetraodon	1040280	1565	453677	1684136336	3712
Killifish	773775	2316	531665	2531555536	4762
2015					
Amphiprion	1244091	193623	1036729	530305664	512
Roussette	1662646	372336	1906300	271617672	142


Traitement RepeatModeler 2015 Le Match: RamDisk vs GlusterFS

Progression « Input Database Coverage »

Progression « Family Refinement »

Less is Better!

Best is Better!

Quel enseignement de repeat*? GlusterFS: pas la panacée...

- La panacée n'existe pas :
 - en matière de stockage, de traitement, de « modes »
- Deux nécessités :
 - Exploration la plus fine possible sur ensemble « pertinent »
 - Diversité des installations pour explorer les différentes approches
- Mais quel facteur limitant pour GlusterFS ?
 - Exploration sur un serveur GlusterFS distribué...

Petit exemple récent Création d'un pool de 4 pairs

- La configuration matérielle : 4 nœuds Sunfire x4150
 - 8 cœurs E5440 à 2.9GHz, 32 GB de RAM,
 - 8 disques NearLine SAS de 1TB en 2.5 pouces
 - Infrastructure InfiniBand DDR sur x4150 et QDR sur R410
- La configuration logicielle : SIDUS sur Debian Jessie
 - Solution « diskless » pour le système
 - Solution ZFSonLinux 0.6.5.6, RaidZ1 sur 8 disques de 1TB
- Nécessité d'une persistance de données...
 - 3 volumes ZFS pour 3 dossiers : GlusterData, GlusterLib, GlusterLog

D'abord, la « cuisine » ZFS Création des espaces...

- Création du pool ZFS sur chaque nœud
 - clush -w x41z[1-4] 'zpool create -o ashift=12 -f raid5 raidz \$(ls /dev/disk/by-id/wwn* | tr "\n" " ")'

Tuning du ZFS

clush -w x41z[1-4] "echo \$((\$(free | grep Mem | awk '{ print \$2 }')/4*1024)) > /sys/module/zfs/parameters/zfs_arc_max"

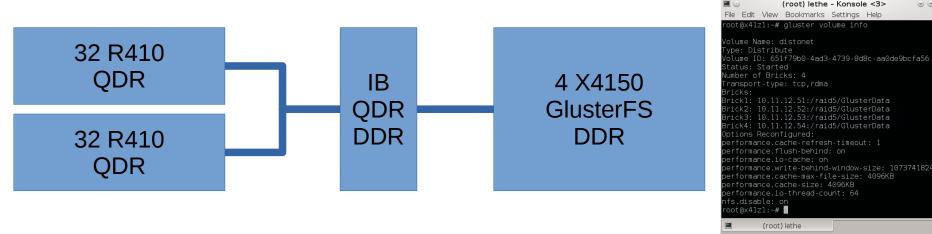
Tuning des volumes

- clush -w x41z[1-4] zfs set atime=off raid5
- clush -w x41z[1-4] zfs set compress=lz4 raid5

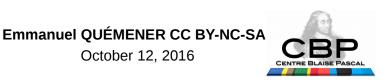
Création des volumes ZFS

- clush -w x41z[1-4] zfs create raid5/GlusterData
- clush -w x41z[1-4] zfs create -o mountpoint=/var/lib/glusterd raid5/GlusterLib
- clush -w x41z[1-4] zfs create -o mountpoint=/var/log/glusterfs raid5/GlusterLog

Puis, la configuration GlusterFS Association, création, démarrage...


- Activation du serveur GlusterFS sur chaque pair
 - clush -w x41z[1-4] /etc/init.d/glusterfs-server start
- Ajout de chaque pair à la liste
 - ssh x41z1 gluster peer probe 10.11.12.52;
 - ssh x41z1 gluster peer probe 10.11.12.53;
 - ssh x41z1 gluster peer probe 10.11.12.54
- Création de l'espace partagé de nom distonet, en RDMA & TCP
 - ssh x41z1 gluster volume create distonet transport rdma,tcp 10.11.12.51:/raid5/GlusterData/
 10.11.12.52:/raid5/GlusterData/ 10.11.12.53:/raid5/GlusterData/ 10.11.12.54:/raid5/GlusterData/ force
- Démarrage du volume
 - ssh x41z1 gluster volume start distonet
- Visualisation du volume
 - ssh x41z1 gluster volume info

Ensuite, le montage sur les nœuds



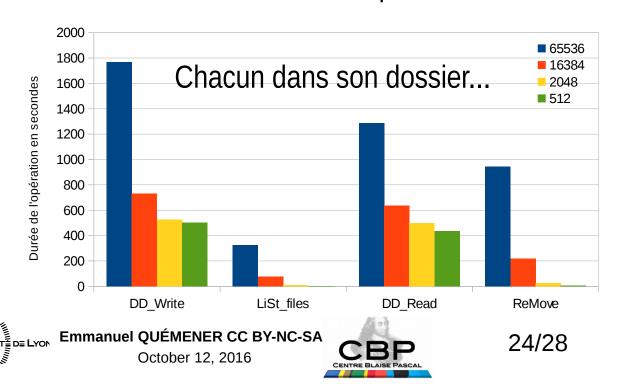
- Pour 64 nœuds Dell R410
 - Interconnexion Infiniband QDR

October 12, 2016

- Pour le montage sur 64 nœuds Dell R410
 - clush -w r410node[1-64] 'mount.glusterfs 10.11.12.\$((\$(echo \$HOSTNAME | sed -e "s/r410node//g")%4+51)):distonet /distonet

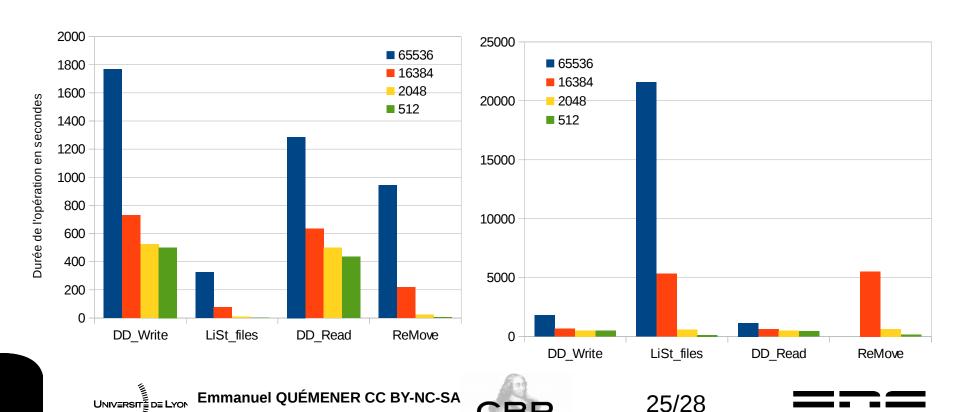
Enfin, l'expérimentation Après la conf', la perf'

- Expériences : accès massif & simultané des 64 nœuds
 - Chaque nœud écrit dans son dossier ou dans le même, salve de 16
 - Opération d'écriture, de listage, de lecture et d'effacement
 - Nombre de fichiers de 512 à 65536 pour un volume total de 12GB
- Les lignes d'exécution, exemple pour 16384 :
 - (/usr/bin/time clush -w r410node[1-64] 'seq -w 1 1 16384 | /usr/bin/time xargs -P 16 -I '{}' dd if=/dev/zero of=/distonet/benchs/ \HOSTNAME -'{}'.raw bs=2048 count=360 ') > dd_w_2048_OneFolder_\$(date "+ %Y%m%d-%H%M").log 2>&1
 - (/usr/bin/time clush -w r410node[1-64] '/usr/bin/time ls -l /distonet/benchs/ $$\{HOSTNAME\}-* \mid wc -l') > ls_$ (date "+%Y%m%d-%H%M").log 2>&1$
 - (/usr/bin/time clush -w r410node[1-64] 'seq -w 1 1 16384 | /usr/bin/time xargs -P 16 -I '{}' dd of=/dev/null if=/distonet/benchs/ Φ -\text{HOSTNAME}-'{}'.raw bs=16384 count=360 ') > dd_r_16384_OneFolder_\$(date "+ %Y%m%d-%H%M").log 2>&1
 - (/usr/bin/time clush -w r410node[1-64] '/usr/bin/time rm -f /distonet/benchs/\${HOSTNAME}*') > rm_\$(date "+%Y%m%d-%H%M").log 2>&1

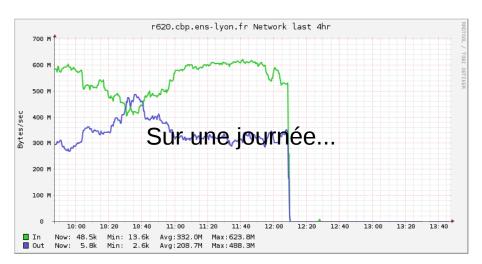


Enfin, l'expérimentation Après la conf', la perf'

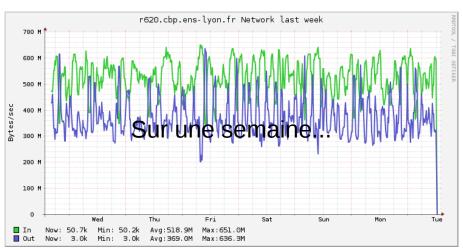
- Expériences : accès massif & simultané des 64 nœuds
 - Chaque nœud écrit dans son dossier ou dans le même, salve de 16
 - Opération d'écriture, de listage, de lecture et d'effacement
 - Nombre de fichiers de 512 à 65536 pour un volume total de 12GB



Des résultats instructifs... Comment flinguer son partage ?


Chacun dans son dossier...

October 12, 2016


Tout dans le même!

Un dernier test... La charge... R620 client, 40 iozones simultanés

- 1 GB/s...
- Limitation claire de FUSE

Qualités & Défauts de GlusterFS

• Qualités:

- Ses coûts « marginaux » :
 - Coût d'entrée : rien, ou presque...
 - Coût d'exploitation : ben, pas grand-chose...
 - Coût de sortie : en s'arrangeant bien, le « socle » suffit...
- Sa simplicité de mise à disposition & de partage
- Son développement (et sa maintenance) par RedHat

Défauts :

- Sa gestion des quotas
- Sa gestion des snapshots (OK avec du LVM, « manuelle » en ZFS)
- Son absence de vrai « mode bloc » (mais TGT GlusterFS)
- Sa sensibilité aux dossiers avec 123456789 fichiers dans un dossier...

En conclusion

- GlusterFS: simple, rapide, efficace
 - Mais pas universel (pas plus que les autres)
- Paradigme du « à chaque usage, son espace optimal! »
 - L'usage : le mariage du traitement & des données
 - Réservation d'un type d'espace, même temporaire
 - « mode bloc » devenant indispensable (VM…)
- Ecosystème information en mutation
 - Avant, seulement les architectures de traitement...
 - Maintenant, un « système » intégrant tout…

