
Houches 2016 : 6th School

Computational Physics

Travels, tries, traces, traps, tricks, trends and trolls...

Event log of a native physicist inside the world of parallelism

how the heat frontier led disruptive technologies...

Emmanuel Quémener

Emmanuel QUÉMENER CC BY-NC-SA 2/67
June 2, 2016

Warnings about your lecturer...
● I’m french

– And all TV series are translated in France (so, no improving english via TV :-()

● I’m a « production » of french university 25 years ago
– And english learning & speaking was not clearly a priority

● I’m not graduate in computers
– But I use computers since 1984 and Debian Linux for 20 years

● I’m a physicist
– And I worked on gravitational lenses and their application to Lambda in 1994

● I’m research engineer
– But I improve my knowledge on all IT domains since 20 years…

● The most important thing I learn this 25 years :
– « If you can not prove that the work is done , it is not worth undertaking it ! »

Emmanuel QUÉMENER CC BY-NC-SA 3/67
June 2, 2016

My (chaotic) adventure in 1 slide
From astrophysics to computing

● 1993 : Master 1 in astrphysics (Toulouse)
– Code simulating of Gravitational Lenses

● 1994 : Master 2 in astrophysics (Paris-Meudon)
– « Reloaded » of JPLuminet Black Hole image
– Use of Gravitational Lenses to constrain Cosmological Constant

● 1995-1999 : PhD in optical processing (ENST-Bretagne)
– Lots of Modelisation, Simulations of optical benchs
– System Administation of my laboratory, Debian user since june 1996

● 1999-2005 : System & Network Engineer (ENS-Cachan)
● 2006 : Project engineer on JWST Nirspec (CRAL, Lyon)
● 2007 : Research engineer in LIP (Computing & Parallelism Laboratory, ENS-Lyon)

– Gridification of applications as RAMSES in LEGO project

● 2007-2009 : IT supervisor of ENS-Lyon
● 2009- : Research Engineer & IT Test pilot (Blaise Pascal Center, ENS-Lyon)

Emmanuel QUÉMENER CC BY-NC-SA 4/67
June 2, 2016

Centre Blaise Pascal :
Experimental platform with 10 technical facilities

● Multi-nodes : 5 clusters from 4 to 64 nodes, Nodes/Cores : 4/24, 8/64, 8/64, 64/512
● Multi-cores : 10 from 2 to 20 cores,

– Nodes/Servers : from 8 to 20 cores, Workstations : from 2 to 16 cores

● GPU & Accelerator : 36 different models of GPU (AMD & Nvidia), 1 Intel MIC
– GPGPU : 8 ; GPU Nvidia : 18 ; GPU AMD/ATI : 10 types ; Xeon Phi 7120P

● Integration : 14 virtual machines : Debian from Lenny to Sid in 32 & 64 bits, ...
● Exotic hardware : 3 machines ARMv7 under Debian Jessie or Ubuntu
● 3D facilities : 2 workstations, 2 video projectors, 20 monitors, 4 glasses
● Remote desktop facilities : more than 25 hosts with x2go/VirtualGL
● COMOD with SIDUS : « Compute On My Own Device » for laboratories users

– SIDUS is « Single Instance Distributing Universal System »

● Galaxy project demonstrator for data intensive biomedical research

Emmanuel QUÉMENER CC BY-NC-SA 5/67
June 2, 2016

Blaise Pascal center as Dryden FR
A small but illustrative example

Nasa X-29
● Cell of F-5
● Engine of F-18
● Gear of F-16
● Studies

– Fwd swept wing
– Incidence >50°
– « Fly-By-Wire »

Recycle, Re-use and explore new domains

Emmanuel QUÉMENER CC BY-NC-SA 6/67
June 2, 2016

Warnings about this course
What it will not be ...
● A introduction to general parallel computing

– https://computing.llnl.gov/tutorials/parallel_comp/

● An introduction to parallel langages
– MPI : https://computing.llnl.gov/tutorials/mpi/
– Posix Threads : https://computing.llnl.gov/tutorials/pthreads/
– OpenMP : https://computing.llnl.gov/tutorials/openMP/
– That’s where I learn alone how to…

● And I’d like to provide you how I would like to learn it.

Emmanuel QUÉMENER CC BY-NC-SA 7/67
June 2, 2016

Parallelism in 7 questions
5 Ws & 2 Hs
● Analytical Method : answer 7 questions
● Why ? What ? When ? Where ? Who ?
● How much ? How ?
● In french, CQQCOQP !
● Interesting approach not to forget :
● Problem : intrication between questions
● Advantage : really separate ambiguities
● Try to answer without to many overlappings !

Emmanuel QUÉMENER CC BY-NC-SA 8/67
June 2, 2016

Why parallelism : //ism is a way...
Where we go ? Where we are ?
● Where we are : we all oftently use codes
● Where we go : we want more « performance »
● How to go : parallelism is one way, but why ?
● Before « falling through the rabbit hole » of parallelism :

– What are the practices on codes ?
– How to define a performance of a code ?
– What selected criterium of performance to choose ?
– How to reach the selected performance ?

Emmanuel QUÉMENER CC BY-NC-SA 9/67
June 2, 2016

Codes & Performance :
Which definitions to choose...

● Etymology (Etymonline)
– Code : from latin codex « book, book of laws »

● « systematic compilation of laws » (1236)
● « system of telegraphic communication » (1866)

– Performance :
● « accomplishment » (of something)
● meaning « a thing performed » is from 1590s
● « set of optimal capabilities for a system » (1929)

● And we will choose
– Code : both :-)
– Performance : three :-)

Emmanuel QUÉMENER CC BY-NC-SA 10/67
June 2, 2016

If computing was cooking…
Code : only the recipie...

Code ~

Computer ~

Input Data ~

Output Data ~

Process ~

Control Unit ~

ALU ~

Me ~

Batch Request ~

Recipie

Kitchen

Ingredients

Meal Dish

Cooking process

Cooker

Utensil

Client

Order

Emmanuel QUÉMENER CC BY-NC-SA 11/67
June 2, 2016

Some definitions and letters...
● ALU : Arithmetic & Logic Unit
● CPU : Central Processing Unit
● Flops : Floating Point Operations Per Second
● (GP)GPU : (General Purpose) Graphical Processing Unit
● MPI : Message Passing Interface (communication between nodes)
● RAM : Random Access Memory
● SMP : Shared Memory Processors
● TDP : Thermal Design Power
● And several new ones :

– PR : Parallel Rate (NP in MPI, Threads in OpenMP, Blocks, WorkItems in GPU)
– Itops : Iterative Operations Per Second
– EPU : Equivalent Processing Unit (optimal parallel rate deduced)

Emmanuel QUÉMENER CC BY-NC-SA 12/67
June 2, 2016

What’s this ?
Code, protocol of experimentation
● In cuisine :

– We have all the ingredients, we want to make a dish !

● In scientific ways :
– Simulation : « On Its Theory (Discrete ?) Service »
– Processing : for « demanding » experimentaters
– Visualisation : to see to perceive things (and share)

● Each launch is an experience (and unique one)...
– Recipies : « codes » becaming « processus »
– Utensils : librairies, OS, hardware, networks, ...
– Ingredients : modelisation, data, …
– Execution : and the experience cannot be restricted to Results

Emmanuel QUÉMENER CC BY-NC-SA 13/67
June 2, 2016

Families of Codes
● What distingish the different codes I use ?

– « My code I did of mine and I’m proud of »
– My supervisor code

● In fact, the stratification of codes produced by previous generations of students

– Code «business»
● « Ikea » model : delivered with assembly instructions (without toolbox)

« Crozatier » model : (almost) ready to use

● Like in every family, problems occur for inheritance
● Dependencies to :

– Generic librairies : BLAS, Lapack, FFTw
– Proprietary librairies : Mathworks, Intel, Nvidia, AMD, …
– Hardware !

Emmanuel QUÉMENER CC BY-NC-SA 14/67
June 2, 2016

Performance : how ?
A question of observables !

Sport performance
● To run a 100-metre ?
● To run a marathon ?
● To make shot put ?
● To complete an heptathlon ?

Emmanuel QUÉMENER CC BY-NC-SA 15/67
June 2, 2016

Performance : how ?
A question of objectives !
● To put all luggages & family inside the car
● To draw the attention of females outside the night clubs
● To get from point A to point B in a town with traffic jam
● To climb to Pikes Peak

Emmanuel QUÉMENER CC BY-NC-SA 16/67
June 2, 2016

Performance :
Conditioned by objectives

● Speed : elapsed time (only?)
● Work : immobilization of resources
● Efficiency : best use of available resources
● Scalability : incremental progress when more resources are dedicated
● Portability : diffusion to other IT infrastructure
● Maintainability : time spent to maintain the system operational
● General approach :

– Define un criterium
– Research extreme values (maximum or minimum) for a pertinent test suite

Emmanuel QUÉMENER CC BY-NC-SA 17/67
June 2, 2016

Speed as Performance Criterion
« Speed, I’m Speed... »
● All time, but not only « Elapsed time »
● To use code : the 3 costs

– Entry cost : to learn software, to integrate in infrastructure, …
– Operational cost : to maintain, to operate
– Exit cost : substitution by an equivalent code, an equivalent technology (Cell...)

● Optimization (and its problem) : DD/DE > 1 is pertinent ?
– DE : Total elapsed time for my code
– DD : time spent to minimize this total elapsed time

● To estimate the value :
– System tools, metrology tools in langages, codes, ...
– « Et après moi ? Le déluge ? » : what future for the code ?

Emmanuel QUÉMENER CC BY-NC-SA 18/67
June 2, 2016

Work as Performance Criterion
● Work : « Time is money »

– Ressources : CPU, RAM, GPU, storage, network, ...
– In fact, a Matriochka :

● CPU : several cores, CU, ALU, piles, ...
● RAM/SRAM : 4 levels
● Storages : local, slow & shared (NFS), fast & shared (GlusterFS, Lustre, ...)
● Networks : slow (Gigabit), fast & low latency (InfiniBand)

● Job : reservation (& immobilization) of resources
– Classical : Nodes * Elapsed time

● For a code, « system fingerprint »
– Profiling tools, System tools

Emmanuel QUÉMENER CC BY-NC-SA 19/67
June 2, 2016

Scalability as Criterion
● Scaling :

– In the tasks to be done : Elapsed time ? f(Elapsed Time)
– In required resources : g(System Resources)

● Reefs to avoid :
– Scaling effects (in fact, threashold effects are even worse)
– Needing conductor ? From a Quatuor symphony orchestra…
– Although you execute, the available resources are limited…

● You think I’m joking :-/ ?

– Parallelization becomes unescapable, but why ?

Emmanuel QUÉMENER CC BY-NC-SA 20/67
June 2, 2016

Measure of Performance & Scalability
Pen(s)tacle of statistics:

Stddev

● Why improving statistics ?
– Because you practice sciences !

● The pentacle of statistics
– Average : the first we think, but bad one

● Initialisation process, random tasks

– Median : the one to prefer
– Max : The slowest is the most awaited
– Stddev : indicator of variability
– Min : the best case is to know

Average

Median

Min

Max

Emmanuel QUÉMENER CC BY-NC-SA 21/67
June 2, 2016

Work on Computing Resources
from a Physicist Point of View

Thermodynamics

Mechanics

Power equals product :
● Frequency
● Number of Workers
● Power of 1 Worker

W=∫
x1

x2

F dx=∫
t1

t2

Pdt

W

P
ow

er

Time

WP
ow

er

Time

W

P
ow

er

Time

Emmanuel QUÉMENER CC BY-NC-SA 22/67
June 2, 2016

Horsepower vs RPMHorsepower vs RPM

Work on Computing Resources
An Engine as the source of Power

1 4 7
1

0
13 16 19 22 2

5
28 31 34 3

7
40 43 46 4

9
52 55 58 61 6

4
6

7
70 73 76 79

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00
Pthreads
OpenMP
MPI
OpenCL Intel
OpenCL AMD
Theory

Scalability vs Parallel RateScalability vs Parallel Rate

Emmanuel QUÉMENER CC BY-NC-SA 23/67
June 2, 2016

Why Parallelism (is inevitable) ?
And its constraint is TDP
● Rise and Fall of Frequency

– Between 1989 and 1999 : from 4 MHz to 400 MHz x100 in 10 years
– Between 1999 and 2004 : from 400 MHz to 3 GHz x~10 in 5 years
– Between 2004 and 2009 : from 3 GHz to 2 GHz

● Thermal Design Power : limited power of socket no to overshoot...
● TDP = ½ C V² f

– C = Capacitance, f = frequency, V = voltage

● TDP for a processor : 150 W (on 4 cm²)
– Density of heat of an Induction Hob

● TDP becomes the blocking factor of a processor
Capacitance = Schrink² . Nb Transistors . Mylq Constant (~ 0.015)

Emmanuel QUÉMENER CC BY-NC-SA 24/67
June 2, 2016

Why Parallelism ?
When Clock Speed ~ Velocity...

x1000 in 20 years & stop
(or decrease)

Emmanuel QUÉMENER CC BY-NC-SA 25/67
June 2, 2016

What is Parallelism ?
Let's « Return to the Source »
● Etymology (etymonline.com) : beside one another

– From para- « beside »
– From allelois « each other », from allos « other »

● Parallelism : tasks to achieve, limited ressources...
– Execute independant tasks in parallel

● Execute one task in parallel on all resources
– Sparse communications : Coarse grain
– Heavy communications : Fine grain

● Paradox of parallelism, meridian !

Emmanuel QUÉMENER CC BY-NC-SA 26/67
June 2, 2016

Where is Parallelism ?
● Where is the best computer ?

– Between your ears !
– 20 to 200 billions neurons
– 125 to 220 trillions synapses
– Computational capacity (IBM) : 36 Pflops, 3.2 Pbytes

● The best GPGPU processing card :
– 2880 ALUs
– 12 GB and 288 GB/s of Bandwidth
– Process capability : 4 Tflops
– In fact, getting 1 Tflops (FP64), it's amazing !

Emmanuel QUÉMENER CC BY-NC-SA 27/67
June 2, 2016

Who uses Parallelism :
Are-you like Mr Jourdain ?
● Mister Jourdain :

– « Le Bourgeois Gentilhomme » by Molière
– Speaking prose all his life without knowing it !

● You :
– Have you got any smartphone, tablet, or laptop ?
– Do you know how much cores in your component ?

8 cores !
4+4 4 cores ! 4 cores !

Emmanuel QUÉMENER CC BY-NC-SA 28/67
June 2, 2016

How much is Parallelism ?
Time, Silicone, Complexity...

● The 3-Time costs :
– Entry cost, Operating cost , Exit cost
– Execution time compared to adaptation time

● Silicone : technologies have different prices
– SMP (Shared Memory Processors) are expensive & limited
– MPP (Massively Parallel Processing) need very specific networks
– Clusters are easely extensible

● Complexity : corollary of large amount of gates
– A GPU « core » (QPU) is simpler than a CPU core
– A GPU « core » (QPU) is about 50 times slower than CPU core

Emmanuel QUÉMENER CC BY-NC-SA 29/67
June 2, 2016

When appeared Parallelism ?
With « computing » machines !
Which is the first ?
● Analogical One ?
● Numerical One ?
● Programming One ?

Emmanuel QUÉMENER CC BY-NC-SA 30/67
June 2, 2016

How to « think » : Parallelism :
« Grain... The problem is Grain. »

● 1 Input / 1 Process ? Optimize process !
● 1 Input / Y Process ? Optimize each process !
● X Inputs / 1 Process ? Optimize distribution !
● X Inputs / Y Process ? Optimize both !

Grain is defined by communication rate !
● Fine grain : heavy communications (>> 1/second)
● Coase grain : sparse communications (< 1/second)
● Embarrassing parallelism : independant tasks

Emmanuel QUÉMENER CC BY-NC-SA 31/67
June 2, 2016

How to « think » ParallelisM :
Flynn Taxonomy

● SISD : Simple Instruction Simple Data
● SIMD : Simple Instruction Multiple Data

– Vectorization

● MISD : Multiple Instructions Simple Data
– Pipelining

● MIMD : Multiple Instructions Multiple Data

Let's have a look

« Behind the Kitchen Door » (In Silicon) ?

Emmanuel QUÉMENER CC BY-NC-SA 32/67
June 2, 2016

How to Parallel Programming ?
Split/Merge between process(es)

● Pipelining fine grain, a job for silicon :
– 5 simple instructions @ a time

● Intruction Fetch
● Instruction Decode
● Execute
● (MEM)
● Write Back

– 2 specs of RISC : 1 instruction/cycle, using registers

● 2 approaches :
– Vectorization Vectorization : MergeMerge/ProcessProcess/SplitSplit
– Distribution Distribution : SplitSplit/ProcessProcess/MergeMerge

● In fact, not parallize but meridianize

Processes

Split

MergeMerge

Split

Emmanuel QUÉMENER CC BY-NC-SA 33/67
June 2, 2016

To be (a matriochka) or not to be ?
From a processing point of view

Socket

Node

Core

ALU

Cluster

Emmanuel QUÉMENER CC BY-NC-SA 34/67
June 2, 2016

Inside a processor (on a Socket)
4-cores Processors Example

Emmanuel QUÉMENER CC BY-NC-SA 35/67
June 2, 2016

To be (a matriochka) or not to be ?
Hierachical Memories !

No shared memory... So communications !
 Via shared files, messages...

DRAM

L3

L2/L1

Registers

Cluster
20 TB
7 GB/s

Node
64 GB

20 GB/s

Socket
20 MB

120 GB/s

Core

256 KB
200 GB/s

Core

512 bit
333 GB/s

Emmanuel QUÉMENER CC BY-NC-SA 36/67
June 2, 2016

If computing is cooking…
For Memory...

Code ~

Computer ~

Input Data ~

Output Data ~

Process ~

Control Unit ~

ALU ~

Dynamic RAM ~Dynamic RAM ~

L3 Cache ~L3 Cache ~

L2 Cache ~L2 Cache ~

L1 Cache ~L1 Cache ~

Registers ~Registers ~

Recipie

Kitchen

Ingredients

Meal Dish

Cooking process

Cooker

Utensil

Cupboards, tables, ...Cupboards, tables, ...

All Working planesAll Working planes

Near Working planeNear Working plane

Cutting board, containerCutting board, container

Hands of CookerHands of Cooker

Registers

Registers

L 1

L 1

L 2
L 2

L 3

L 3

RAM

RAM

Emmanuel QUÉMENER CC BY-NC-SA 37/67
June 2, 2016

Cores per Socket

Where you are ? Where you (will) go ?
Cores per Socket & Architecture...

Architectures

Enhanced
Clusters

SMP

Constellations

Clusters

Emmanuel QUÉMENER CC BY-NC-SA 38/67
June 2, 2016

Have a quick look on OS
And accelerator stuff !

Unix

Linux

No Accelerator !

But 4/10 of Best's Yes !

Phi

GPU

Emmanuel QUÉMENER CC BY-NC-SA 39/67
June 2, 2016

How much Parallelism ?
From multi-core to myri-ALU
● CPU, 4 in laptop, 16 in workstation, 48 in node
● From GPU to GPGPU :

– A tiny GPU card : 128 ALU, 512 MB of RAM
– A huge GPU card : 4096 ALU, 6 GB of RAM

● A huge GPGPU card : 2*2496 ALU, 12 GB of RAM
● Accelerator Xeon Phi : 61 CPU (Pentium like units)

Emmanuel QUÉMENER CC BY-NC-SA 40/67
June 2, 2016

How to program parallelism ?
Different approaches

Parallel Programming Models

Parallel Programming Libairies

Cluster Node CPU Node GPU Node Nvidia Accelerator

MPI Yes Yes No No Yes*

PVM Yes Yes No No Yes*

OpenMP No Yes No No Yes*

Pthreads No Yes No No Yes*

OpenCL No Yes Yes Yes Yes

CUDA No No No Yes No

TBB No Yes No No Yes*

Cluster Node CPU Node GPU Node Nvidia Accelerator

BLAS BLACS
MKL

OpenBLAS
MKL

clBLAS CuBLAS OpenBLAS
MKL

LAPACK Scalapack
MKL

Atlas
MKL

clMAGMA MAGMA MagmaMIC

FFT FFTw3 FFTw3 clFFT CuFFT FFTw3

Emmanuel QUÉMENER CC BY-NC-SA 41/67
June 2, 2016

How to estimate // Efficiency ?
Amdahl Law, order (and decay)

● In the process, 2 parts
– Sequential part, in fraction s
– Parallel part, in fraction p

– Elapsed Time : TN=T1(s+p/N)

– Speedup : 1/(1-p+p/N)
– Efficiency : 1/N(1-p+p/N)

● Speed up (& efficiency) :
– 2 systems : N=500 & N=1000
– 4 cases : 90 %, 99 %, 99.9 %, 99.99 %

●

Emmanuel QUÉMENER CC BY-NC-SA 42/67
June 2, 2016

How to estimate Parallel Efficiency ?
Amdahl Law, order (and decay)
● Speed up (& efficiency) : N=500 & N=1000

● Questions :
– What's about scalability of my code ?
– Is Amdahl law representative of « real » applications ?

Parallel Rate N=500 N=1000

Parallel Part Speedup Efficiency Speedup Efficiency

90% 9.8 2% 9.9 (+0.1%) 1%

99% 83 17% 91 (+9%) 9%

99.9% 334 66% 500 (+50%) 50%

99.99% 476 95% 909 (+91%) 91%

Emmanuel QUÉMENER CC BY-NC-SA 43/67
June 2, 2016

Have you got your driving licencing...
 In computer sciences ;-) ?

● In an applied mathematics french book :
– « Physicists are casual in the use of mathematics that

mathematicians often equate with carelessness... »

● As a BOFH of IT resources :
– « Scientists are casual in the use of computing resources that I

often equate with my english speaking ! »

● Do you « drive » computing resources ?

htop dstat

Emmanuel QUÉMENER CC BY-NC-SA 44/67
June 2, 2016

16 2
6

3
6

46 5
6

66 76 86 96
10

6
11

6
12

6
13

6
14

6
15

6
1

6
6

1
76

1
86

100

1000

Amdahl law or lie ?
Are you ready to take the Red Pill ?

 0

 50

 100

 150

 200

 250

 300

 100 200 300 400 500

S
p
e
e
d
 U

p
 f

a
ct

o
r

(r
e
la

ti
v
e
 t

o
 8

 N
P
)

NP

PiMC : parallel execution with C/MPI, 10e12 iterations

Mesures

Loi d'Amdahl

Emmanuel QUÉMENER CC BY-NC-SA 45/67
June 2, 2016

Welcome, Amdahl, to the Real World !
10 machines from 2 to 40 cores...

HP 8770w
1 socket
4 cores

Mode HT

Dell C6100
2 sockets

6 cores/socket
Mode HT

Dell
O745

1 socket
2 cores/s

Dell T4600
1 socket

6 cores/socket
Mode HT

Dell R410
2 sockets

4 cores/socket
Mode HT

Dell R620
2 sockets

10 cores/socket
Mode HT

Dell T3500
1 socket
4 cores/s

Dell T7600
2 sockets

8 cores / socket
Mode HT

Sun X41z
2 sockets
4 cores/sSun X2200

2 sockets
4 cores/socket

hwloc-ls as
command

Emmanuel QUÉMENER CC BY-NC-SA 46/67
June 2, 2016

Amdahl Law in the real world
A test bench : 10 CPUs, 1 code

● Inside a node, 2 processors :
● 10 different CPUs, from 2 to 20 cores (40 in HT)
● 1 application : pbzip2 (parallel bzip2)
● 1 data set : encoded film (1.4 GB) (worst scenario)
● From 1 process to 80 process
● Metrology Tool : time
● Observable : elapsed

G
H

z 1 3 5 7 9 1
1

1
3

1
5

17 19 21 2
3

2
5

27 29 31 33 35 3
7

3
9

0

50

100

150

200

250

300

350

400

450

500

 I7-3840 E5-2670v2 X5550 E5440

AMD2347HE X5650 W3565 E5-2620

Core2 6300 E5-2665

Emmanuel QUÉMENER CC BY-NC-SA 47/67
June 2, 2016

Amdahl Law in real world
Acceleration & Variations

● Symptoms :
– On large number of cores, 70 % to 80 % efficiency
– Great variations on recent twice-sockets machines
– Decrease for heavy charges on old processors
1 3 5 7 9

1
1

1
3

15 17 19 21 23 2
5

27 29 31 33 35 3
7

3
9

0

2

4

6

8

10

12

14

16

18

20

Theory
 I7-3840
E5-2670v2

X5550
E5440

AMD2347HE
X5650

W3565
E5-2620
Core2 6300

E5-2665

Emmanuel QUÉMENER CC BY-NC-SA 48/67
June 2, 2016

New ServerNew Server
2 sockets, 20 cores2 sockets, 20 cores

96.51 %96.51 %

Old Cluster NodeOld Cluster Node
2 sockets, 8 cores2 sockets, 8 cores

91.68 %91.68 %

Amdahl Law : Fitting images !

New WorkstationNew Workstation
2 sockets, 16 cores2 sockets, 16 cores

96.57 %96.57 %

Recent Cluster NodeRecent Cluster Node
2 sockets, 12 cores2 sockets, 12 cores

96.19 %96.19 %

Emmanuel QUÉMENER CC BY-NC-SA 49/67
June 2, 2016

1 3 5 7 9

11 13 15 17 1
9

21 23 25 27 2
9

31 3
3

35 3
7

39

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

1 3 5 7 9

11 1
3

15 17 19 21 23 2
5

27 2
9

31 33 3
5

37 39

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

And worse : variability
Variability = Stddev/Median

1 3 5 7 9 1
1

13 15 17 1
9

21 2
3

25 27 2
9

31 3
3

35 3
7

39

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

1 3 5 7 9

1
1

13 1
5

17 19 21 2
3

25 2
7

29 31 33 35 37 39

0

0,02

0,04

0,06

0,08

0,1

0,12

0,14

0,16

0,18

0,2

Old Node
8 cores

2 sockets

Recent Node
12 cores
2 sockets

New WS
16 cores
2 sockets

New Server
20 cores
2 sockets

Emmanuel QUÉMENER CC BY-NC-SA 50/67
June 2, 2016

Less is Better

MPI applications, back to science
Amdahl law, in real

Lammps Molecular Dynamics application
● From 16 to 192 NP
● Compared to GPGPU
● 99.96 % //ized (personal record!)
● 2GPGPU equal 120 NP

VASP DFT application
● From 1 to 48 NP
● 99 % to 99.5 % //ized
● OpenBLAS vs ATLAS...

Less is Better !

Emmanuel QUÉMENER CC BY-NC-SA 51/67
June 2, 2016

What for simplistic implementations ?
PiMC : Pi by Dart Board Method

● Historical exemple for Monte Carlo
Method : distribution

● Parallel implementation : distribution
– From 2 to 4 parameters

● Number of iterations
● Parallel rate
● (Type of variable : INT32, INT64, FP32, FP64)
● (RNG : MWC, CONG, SHR3, KISS)

– 2 simple observables :
● Pi estimation (just indicative, Pi not rational :-))
● Elapsed time

Emmanuel QUÉMENER CC BY-NC-SA 52/67
June 2, 2016

PiMC just for Houches 6th school
● Bench :

– Hardware : 64 R410 with 8 cores in HT mode, Infiniband Interconnect
● Infiniband interconnect

– OS : Debian Jessie SIDUS
– Software : OpenMPI/C

● Experiences :
– Communications reduced to minimum
– 1 Piterations : 1012 equally distributed
– Parallel rate from 1 to 512 (sparse distribution)
– 40 launches for each Parallel Rate selected
– Metrology done by « time » program
– /usr/bin/time mpirun.openmpi -np $PR -mca btl self,openib,sm -hostfile $MyHostFile -loadbalance

hwloc-bind -p pu:$AFF /scratch/root/bench4gpu/Pi/C/MPI/Pi_MPI_FP32_MWC $ITERATIONS

Emmanuel QUÉMENER CC BY-NC-SA 53/67
June 2, 2016

Without hwloc specified
OS distribution of Tasks

PiMC just for
Why affinity selected ?

● During qualification of 48 nodes cluster
● Hundred of launches to evaluate reproducibility
● Morality : localize your process can be useful !

Hwloc from 0 to 7 cores
Physical ones

Emmanuel QUÉMENER CC BY-NC-SA 54/67
June 2, 2016

PiMC : and the results are...
NP Itops Speedup 1 Speedup 8 Total Time Variability % Average Median Stdev Minimum Maximum

1 1.68E+08 1.00 1.05 5952 0.04 5953.22 5952.11 2.46 5950.32 5958.86

8 1.28E+09 7.62 8.00 6245 0.05 780.54 780.65 0.35 780.02 781.05

16 2.55E+09 15.21 15.96 6263 0.04 391.41 391.41 0.16 391.04 391.71

32 5.08E+09 30.22 31.71 6302 0.07 196.95 196.93 0.13 196.82 197.53

64 9.96E+09 59.30 62.22 6424 0.08 100.39 100.38 0.08 100.25 100.63

96 1.45E+10 86.31 90.56 6621 0.25 68.94 68.97 0.18 68.32 69.53

128 1.86E+10 110.86 116.32 6872 0.55 53.75 53.69 0.29 53.14 54.74

160 2.22E+10 132.12 138.63 7208 0.75 45.09 45.05 0.34 44.47 46.28

192 2.53E+10 150.53 157.95 7592 0.59 39.52 39.54 0.23 38.85 40.20

224 2.80E+10 166.38 174.57 8014 0.81 35.80 35.78 0.29 35.21 37.10

256 3.00E+10 178.80 187.60 8522 0.74 33.32 33.29 0.25 32.78 34.28

288 3.17E+10 188.54 197.82 9092 0.82 31.58 31.57 0.26 31.04 32.30

320 3.30E+10 196.28 205.94 9704 1.04 30.37 30.33 0.31 29.87 31.26

352 3.40E+10 202.14 212.10 10365 1.43 29.52 29.45 0.42 28.83 30.58

384 3.44E+10 204.86 214.94 11157 1.29 29.08 29.06 0.38 28.34 30.19

416 3.48E+10 207.14 217.34 11954 1.03 28.70 28.74 0.30 28.19 29.67

448 3.50E+10 208.08 218.32 12815 1.16 28.67 28.61 0.33 28.04 29.69

480 3.49E+10 207.97 218.21 13738 1.34 28.65 28.62 0.38 27.99 29.77

512 3.45E+10 205.10 215.20 14858 1.28 29.10 29.02 0.37 28.58 30.18

Emmanuel QUÉMENER CC BY-NC-SA 55/67
June 2, 2016

PiMC : graphically
Does really Amdahl a good law ?

● Elapsed Time in seconds
– Seems to be nice, but…

● Performance in Itops
– Fit to 1 : p=99.78 %
– Fit to 8 : p=99.83 %

 0

 1000

 2000

 3000

 4000

 5000

 6000

 100 200 300 400 500

E
la

p
se

d
 T

im
e
 (

Le
ss

 i
s

b
e
tt

e
r)

Parallel Rate (NP in MPI)

PiMC : parallel execution with C/MPI for 10 12 distributed iterations

Mesures

Amdahl Law Fit to PR=1

 0

 5x10 9

 1x10 10

 1.5x10 10

 2x10 10

 2.5x10 10

 3x10 10

 3.5x10 10

 4x10 10

 4.5x10 10

 5x10 10

 100 200 300 400 500

It
o
p

s
(I

te
ra

ti
v
e
 O

p
e
ra

ti
o
n

s
Pe

r
S

e
co

n
d

)

Parallel Rate (NP in MPI)

PiMC : parallel execution with C/MPI for 10 12 distributed iterations

Mesures

Amdahl Law, Fit to PR=1

Amdahl Law, Fit to PR=8

Emmanuel QUÉMENER CC BY-NC-SA 56/67
June 2, 2016

Evolution of Amdahl law :
Integer a linear influence : Mylq

● Amdahl law : T=T1(1-p/p/N)

● Mylq law : T=sM+cMN+pM/N

● Signification cM :
– Communications
– Initialization processes

– and cM~0.03,

● And pM ~ 0.9998 with a fit which excludes PR=1 value

 0

 5x10 9

 1x10 10

 1.5x10 10

 2x10 10

 2.5x10 10

 3x10 10

 3.5x10 10

 4x10 10

 4.5x10 10

 5x10 10

 100 200 300 400 500

It
o
p

s
(I

te
ra

ti
v
e
 O

p
e
ra

ti
o
n

s
Pe

r
S

e
co

n
d

)

Parallel Rate (NP in MPI)

PiMC : parallel execution with C/MPI for 10 12 distributed iterations

Mesures

Mylq Law

Amdahl Law

Mylq Law

Amdahl Law

Emmanuel QUÉMENER CC BY-NC-SA 57/67
June 2, 2016

Mylq Law : Why exclude PR=1
Is a better predictible law ?

● Why exclude PR=1
– Internal node mecanisms
– OS effects
– Processor effects : Turbo

● More predictible law ?
– Try to fit with only : 1/2,1/4,1/8
– On 1/4, it works fine ;-)

● But there are other effects to include...

 0

 1x10 10

 2x10 10

 3x10 10

 4x10 10

 5x10 10

 100 200 300 400 500

It
o
p

s
(I

te
ra

ti
v
e
 O

p
e
ra

ti
o
n

s
Pe

r
S

e
co

n
d

)

Parallel Rate (NP in MPI)

PiMC : parallel execution with C/MPI for 10 12 distributed iterations

Mesures

Mylq Law Fit on range [8-512]

Mylq Law Fit on range [8-256]

Mylq Law Fit on range [8-128]

Mylq Law Fit on range [8-64]

Emmanuel QUÉMENER CC BY-NC-SA 58/67
June 2, 2016

Influence of Elapsed time
And if I inscrease iterations ?

● From 1012 to 1013 iterations
● Speedup from 208 to 448
● Efficiency from 40 % to 87 %
● Itops from 34 to 72 Gitops
● Mylq Parameters :

– pM reduced of 0.99998

– cM=0.032 (previous 0.03)

● Morality : don’t be to stingy on your test sets ;-)

 0

 2x10 10

 4x10 10

 6x10 10

 8x10 10

 1x10 11

 100 200 300 400 500

It
o
p

s
(I

te
ra

ti
v
e
 O

p
e
ra

ti
o
n

s
Pe

r
S

e
co

n
d

)

Parallel Rate (NP in MPI)

PiMC : parallel execution with C/MPI for 1e13 distributed iterations

Mesures

Mylq Law Fit on range [8-512]

Mylq Law Fit on range [8-256]

Mylq Law Fit on range [8-128]

Mylq Law Fit on range [8-64]

Emmanuel QUÉMENER CC BY-NC-SA 59/67
June 2, 2016

Why previous conclusions are
not really honest...

● On last friday, Mylq fit was not so good… Why ?
– Lack of statistics ?

● For each PR, 10 runs
● Distribute on 64-nodes

– Concurrent jobs
– Exclusive in parts

● Variability around 1 %

– Solution :
● Exclusive runs in time

● So, coarse grain codes incfluence each others...
 0

 50

 100

 150

 200

 250

 300

 100 200 300 400 500

S
p

e
e
d

u
p

 f
a
ct

o
r

Parallel Rate

PiMC : parallel execution with C/MPI with 1e12 iterations

Mesures

Mylq Law

Amdahl Law

What’s this ?

Emmanuel QUÉMENER CC BY-NC-SA 60/67
June 2, 2016

0

10

20

30

40

50

60
Pthreads

OpenMP

MPI

OpenCL Intel

OpenCL AMD

1 4 7

10 13 16 19 22 25 2
8

3
1

34 37 4
0

4
3

46 49 52 55 58 61 64 67 70 73 7
6

7
9

0,00

5,00

10,00

15,00

20,00

25,00

30,00

35,00

40,00
Pthreads

OpenMP

MPI

OpenCL Intel

OpenCL AMD

Theory

What about other parallelisms ?
It’s worse… Small example

● Let’s return inside the node…
● A Dell server PowerEdge R620

– Bi-socket, 10-cores : 20 cores
– Hyperthreading mode activated : 40

● Parallel implementations
– MPI in C
– OpenMP in C
– Pthreads in C
– OpenCL in Python

● OpenCL by AMD
● OpenCL by Intel

● Finalement, pas mal OpenCL !

Emmanuel QUÉMENER CC BY-NC-SA 61/67
June 2, 2016

Ok, but for other processors ?
Mmmm… Interesting...

IvyBridgeIvyBridge
8 cores @ 3.5 GHz8 cores @ 3.5 GHz

Sandy BridgeSandy Bridge
16 cores @ 2.4 GHz16 cores @ 2.4 GHz

IvyBridgeIvyBridge
20 cores @ 2.5 GHz20 cores @ 2.5 GHz

HaswellHaswell
28 cores @ 2.3 GHz28 cores @ 2.3 GHz

Emmanuel QUÉMENER CC BY-NC-SA 62/67
June 2, 2016

And for PR >> Number of cores
EPU depends of architecture !

IvyBridgeIvyBridge
8 cœurs @ 3.5 GHz8 cœurs @ 3.5 GHz Sandy BridgeSandy Bridge

16 cœurs @ 2.4 GHz16 cœurs @ 2.4 GHz

IvyBridgeIvyBridge
20 cœurs @ 2.5 GHz20 cœurs @ 2.5 GHz

HaswellHaswell
28 cœurs @ 2.3 GHz28 cœurs @ 2.3 GHz

Max for 8x

Max for 8x
Max for 16x

Max for 8x

Intel x2,3 vs AMD
Period of 4
Max Perf :
● x8 Sandybridge
● x8 IvyBridge
● x16 Haswell

Emmanuel QUÉMENER CC BY-NC-SA 63/67
June 2, 2016

 Parallel RateParallel Rate
 From 1 to 128From 1 to 128

And for others architectures
Mouth-watering before tomorrow

Emmanuel QUÉMENER CC BY-NC-SA 64/67
June 2, 2016

 Parallel RateParallel Rate
 From 1 to 1024From 1 to 1024

And for others architectures
Increasing PR to explore...

Emmanuel QUÉMENER CC BY-NC-SA 65/67
June 2, 2016

After, *PU bound, Memory Bound
The « splutter » to stress memory

 Intel IvyBridge & HaswellIntel IvyBridge & Haswell

28x32

20x32

28x16

20x16

Emmanuel QUÉMENER CC BY-NC-SA 66/67
June 2, 2016

Introduction to conclusion :
IT : The new world of complexity

● Complicated : from « cum plicare », « fold together »
– Descartes : « All is the sum of parts. »

● Complex : from « cum plexus », « weave together »
– Huge amount of interactions, non linearity, emergence, ...

● Computing resources are complex systems
– A running Operating System has at least 200 process running background
– CPU cores change frequency & voltage all the time, start/stop, …
– DRAM change frequency all the time
– Communication devices (network) are all random access components

Emmanuel QUÉMENER CC BY-NC-SA 67/67
June 2, 2016

OSI Model & Amdahl Law
Evolutions & perspectives
● OSI Model : Layer below seen as a service

– Ignoring all the infrastructure is clearly a suicide for scalability

● Amdahl Law : Only depends of T1 and p
– It cannot be used...

● Mylq Law : add a simple proportional factor
– Can help you to evaluate scalabity and predictive performance

● Inside a node, nothing works
– And in a GPU or accelerator

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14
	Diapo 15
	Diapo 16
	Diapo 17
	Diapo 18
	Diapo 19
	Diapo 20
	Diapo 21
	Diapo 22
	Diapo 23
	Diapo 24
	Diapo 25
	Diapo 26
	Diapo 27
	Diapo 28
	Diapo 29
	Diapo 30
	Diapo 31
	Diapo 32
	Diapo 33
	Diapo 34
	Diapo 35
	Diapo 36
	Diapo 37
	Diapo 38
	Diapo 39
	Diapo 40
	Diapo 41
	Diapo 42
	Diapo 43
	Diapo 44
	Diapo 45
	Diapo 46
	Diapo 47
	Diapo 48
	Diapo 49
	Diapo 50
	Diapo 51
	Diapo 52
	Diapo 53
	Diapo 54
	Diapo 55
	Diapo 56
	Diapo 57
	Diapo 58
	Diapo 59
	Diapo 60
	Diapo 61
	Diapo 62
	Diapo 63
	Diapo 64
	Diapo 65
	Diapo 66
	Diapo 67

