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Markus-Luzhnikov model

Classical kernels:

λ(k, l) = 1 (Constant)
λ(k, l) = kl (Multiplicative)
λ(k, l) = (k + l)/2 (Sum)

Microstate: N = N1, N2, . . .

Nm = # of particles of
mass m ∈ {1, 2, 3, . . .}

Coagulation:
Nm1

→ Nm1
− 1

Nm2
→ Nm2

− 1

Nm1+m2
→ Nm1+m2

+ 1

Rate: λ(m1,m2)Nm1
Nm2
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Problem statement

Monomer initial condition: Nm(0) = Mδ(m, 1)

Mass conservation
∑

mmNm(t) = M

Complete gelation event: Nm(t) = δ(m,M)

Equivalently, N(t)
def
=
∑

mNm(t) = 1

Gelation time: TG = E(τ | Nτ = 1)

Find: Prob(Nt = 1) for t << TG

Find: Prob(Nt >> 1) for t > TG
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Smoluchowski (mean field) theory

Ṅm =
1

2

m
∑

m′=1

λ(m′,m−m′)N(m−m′)N(m′)

− N(m)

∞
∑

m′=1

λ(m,m′)N(m′)

- Smoluchowski equation (SE)

Can be rigorously related to ML model in the scaling
limit Nt → ∞ for certain kernels

Cannot be used to describe complete gelation (Nt ∼ 1)

Suffers from finite time singularities for some kernels (e.
g. the multiplicative kernel)
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The formalism
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Path integral expression forP (Nt = 1)

P (Nt = 1) =

∫

∏

τ ′

Dµ(z(τ ′), z̄(τ ′)) exp[−Seff ]

Seff =

∫ t

0

dτ

(

∑

m

żmz̄m + h(z, z̄)

)

− log
(

zM (t)z̄M1 (0)
)

h(z, z̄) = −
1

2

∑

m1, m2

λm1,m2
(z̄m1+m2

− z̄m1
z̄m2

)zm1
zm2

Method: Doi-Zeldovich-Ovchinnikov. Note the presence
of boundary terms.
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Path integral expression forP (Nt = fM)

P (Nt = fM) =
1

(fM)!

∫

∏

τ ′

Dµ(z(τ ′), z̄(τ ′)) exp[−Seff ],

f ∈ (0, 1).

Seff =

∫ t

0

dτ

(

∑

m

żmz̄m + h(z, z̄)

)

− log





(

M
∑

k=1

zk(t)

)fM

z̄M1 (0)





Note the difference in the boundary terms.
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Laplace approximation for the path integral

Laplace formula:

P (Nt = 1) ∼ exp{−Seff [z
c, z̄c]}

Here (zcm(τ), z̄cm(τ)) solve δSeff = 0 subject to:

zm(0)z̄m(0) = Mδm,1, zm(t)z̄m(t) = δm,M (Fast gelation)

zm(0)z̄m(0) = Mδm,1,

M
∑

k=1

zk(t)z̄m(t) = fM (Non-gelation)

General applicability condition: the PI is dominated by
trajectories close to the instanton trajectory
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Euler-Lagrange (instanton) equations

żm =
1

2

∑

m1,m2

λm1,m2
(δm,m1+m2

− z̄m1
δm,m2

− z̄m2
δm,m1

) zm1
zm2

˙̄zm = −
1

2

∑

m1, m2

λm1,m2
(z̄m1+m2

− z̄m1
z̄m2

)(zm1
δm,m2

+ zm2
δm,m1

)

Integrals of motion:
E = h(zc, z̄c) (’Instanton energy’)
M =

∑

mmzcmz̄cm (Mass)

Special solution: z̄ ≡ 1; z solves Smoluchowski
equation, E = 0

Nm(t) = zm(t)z̄m(t) - the symbol of the occupation
number operator
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On the calculation of inf [Seff ]

Claim. Sc
eff = −E · t+ boundary terms

Derivation: h(z, z̄) is homogeneous function of z of
order 2:

∫ t

0

dτ

(

M
∑

m=1

żmz̄m + h

)

=

M
∑

m=0

zmz̄m |t0 +

∫ t

0

dτ

(

−

M
∑

m=1

zm
∂h

∂zm
+ h

)

=

M
∑

m=0

zmz̄m |t0 −E(t)t

N.B. E = 0 corresponds to mean field
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Fast and slow gelation probabilities:
the constant kernel
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The large deviations principle for fast gelation.

The limit: t << 1, M = ∞

logP (Nτ ) ∼ −
Sc
eff

τ
+ log

(

zM (1)z̄M1 (0)

τ

)

,

where

Sc
eff = inf

{z(t),z̄(t)}

∫ 1

0

dτ [
∑

m

˙zmz̄m + h(z, z̄)],

{

zm(0+)z̄m(0+) = ∞ · δm,1,

zm(1−)z̄m(1−) = 0
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Solving the instanton equations.

Euler-Lagrange equation for N(τ) =
∑

m zm(τ)z̄m(τ):

Ṅ(τ) = −
1

2
N2(τ) + E,

Boundary conditions: N(0) = ∞, N(1) = 0

E = −p2

2 < 0

N(τ) = p tan
(p
2(τ − τ0)

)

E = −π2

2

Rate function: logP (Nt = 1) ∼ −π2

2t +O(t0)

Really hard step: the estimate of the contribution from
the boundary terms
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Statistics of mass flux

Non-equilibrium ’turbulent’ state: constant flux of mass
through mass scales of the system.

The average mass flux: J = M/τ (random quantity)

Mean field flux: Jmf = M/TG = M .

P (J > J+) = Pr

(

τ <
M

J+

)

= Pr
(

NM/J+
= 1
) J+→∞

∼ e
−π2

2

J+
Jmf

Left tail of flux distribution:

P (J < J−) = Pr

(

τ >
M

J−

)

∼ Pr
(

NM/J−
= 2
) J−→0

∼ e
−

Jmf

J
−

Fluctuation relation: log
(

Pr(J>JmfL)
Pr(J<Jmf/L)

)

L→∞
∼

(

1− π2

2

)

L

Lyon, Rare Events in Non-Equilibrium Systems, 11-15.06.2012 – p. 15/20



Fast gelation and the non-gelling
probability: the multiplicative kernel
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Fast gelation event

Typical gelation time: TG = Const
M

The scaling limit: M is fixed, t = θ/M , θ << 1

Small time LD principle still applies:
logPr(Nt = 1) ∼ −1

tSeff+ boundary terms

Equations of motion:

Ṅ(τ) = E − M2

2 , 0 < τ < t

N(0) = M, N(t) = 1

Instanton energy: E = M2

2 + 1−M
t

Boundary terms dominate

logP (Nt = 1) ∼ −M log
(

1
θ

)

+ O(θ0) ⇒ Algebraic decay
of gelation probability
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LDP for P (Nt = fM), f ∈ f(0, 1)

Scaling limit: M → ∞, t = θ/M , θ ∼ 1

LD principle:

1

M
log Pr

(

N θ
M

= fM
)

= −I(θ) +O(log(M)/M)

Rate function: I(θ) = 1
2(θ− θmf (f))−

θmf (f)
2 log(θ/θmf (f))

θmf (f) = 2(1− f)- mean field time to N = fM . Potential
non-analyticity!
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A note for mathematicians.

ML model can be restated as a stochastic differential
equation driven by Poisson noise

All scaling limits considered in the presentation
correspond to the limit of weak noise

All large deviation principles discussed in the talk follow
from the standard Wentzel-Freidlin theory for SDE’s
with Poisson noise.
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Conclusions

Large deviations turned out to be an effective tool in the
analysis of aggregation

Rate function=Instanton energy×time+boundary terms

Instanton energy= 0 corresponds to MF approximation

Instanton equations: Mean field equation = Optimal
noise fluctuation

Solutions to instanton equations are globally well
defined even for gelling kernels

Reference: Colm Connaughton, Roger Tribe, Oleg
Zaboronski On the statistics of rare events in
Markus-Luzhnikov model, still in preparation
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