# Instantons in Aggregation Kinetics 

Colm Connaughtona, Roger Tribe ${ }^{\text {b }}$ and Oleg Zaboronski ${ }^{\text {G }}$
${ }^{\text {a }}$ Complexity Centre, University of Warwick
${ }^{b}$ Department of Mathematics, University of Warwick
${ }^{c}$ Department of Mathematics, University of Warwick

## Plan

- The model
- Mean field theory
- The formalism
- Rate functions via DZO path integrals
- Instanton energy and mass conservation
- Fast and slow gelation probabilities: constant kernel
- Large deviations principle
- Solution of instanton equations
- The statistics of mass flux
- Fast gelation and the non-gelling probability: multiplicative kernel
- Fast gelation: LDP and instanton equations
- Non-gelling near gelation time: LDP, results
- Conclusions


## Markus-Luzhnikov model



Classical kernels:
$\lambda(k, l)=1$ (Constant)
$\lambda(k, l)=k l$ (Multiplicative) $\lambda(k, l)=(k+l) / 2$ (Sum)

- Microstate: $\mathbf{N}=N_{1}, N_{2}, \ldots$
- $N_{m}=\#$ of particles of mass $m \in\{1,2,3, \ldots\}$
- Coagulation:
- $N_{m_{1}} \rightarrow N_{m_{1}}-1$
- $N_{m_{2}} \rightarrow N_{m_{2}}-1$
- $N_{m_{1}+m_{2}} \rightarrow N_{m_{1}+m_{2}}+1$
- Rate: $\lambda\left(m_{1}, m_{2}\right) N_{m_{1}} N_{m_{2}}$


## Problem statement

- Monomer initial condition: $N_{m}(0)=M \delta(m, 1)$
- Mass conservation $\sum_{m} m N_{m}(t)=M$
- Complete gelation event: $N_{m}(t)=\delta(m, M)$
- Equivalently, $N(t) \stackrel{\text { def }}{=} \sum_{m} N_{m}(t)=1$
- Gelation time: $T_{G}=\mathbb{E}\left(\tau \mid N_{\tau}=1\right)$
- Find: $\operatorname{Prob}\left(N_{t}=1\right)$ for $t \ll T_{G}$
- Find: $\operatorname{Prob}\left(N_{t} \gg 1\right)$ for $t>T_{G}$

Smoluchowski (mean field) theory

$$
\begin{aligned}
\dot{N}_{m} & =\frac{1}{2} \sum_{m^{\prime}=1}^{m} \lambda\left(m^{\prime}, m-m^{\prime}\right) N\left(m-m^{\prime}\right) N\left(m^{\prime}\right) \\
& -N(m) \sum_{m^{\prime}=1}^{\infty} \lambda\left(m, m^{\prime}\right) N\left(m^{\prime}\right)
\end{aligned}
$$

- Smoluchowski equation (SE)
- Can be rigorously related to ML model in the scaling limit $N_{t} \rightarrow \infty$ for certain kernels
- Cannot be used to describe complete gelation $\left(N_{t} \sim 1\right)$
- Suffers from finite time singularities for some kernels (e. g. the multiplicative kernel)


## The formalism

## Path integral expression for $P\left(N_{t}=1\right)$

$$
\begin{gathered}
P\left(N_{t}=1\right)=\int \prod_{\tau^{\prime}} \mathcal{D} \mu\left(\mathbf{z}\left(\tau^{\prime}\right), \overline{\mathbf{z}}\left(\tau^{\prime}\right)\right) \exp \left[-S_{e f f}\right] \\
S_{e f f}=\int_{0}^{t} d \tau\left(\sum_{m} \dot{z}_{m} \bar{z}_{m}+\mathfrak{h}(\mathbf{z}, \overline{\mathbf{z}})\right)-\log \left(z_{M}(t) \bar{z}_{1}^{M}(0)\right) \\
\mathfrak{h}(\mathbf{z}, \overline{\mathbf{z}})=-\frac{1}{2} \sum_{m_{1}, m_{2}} \lambda_{m_{1}, m_{2}}\left(\bar{z}_{m_{1}+m_{2}}-\bar{z}_{m_{1}} \bar{z}_{m_{2}}\right) z_{m_{1}} z_{m_{2}}
\end{gathered}
$$

Method: Doi-Zeldovich-Ovchinnikov. Note the presence of boundary terms.

## Path integral expression for $P\left(N_{t}=f M\right)$

$$
P\left(N_{t}=f M\right)=\frac{1}{(f M)!} \int \prod_{\tau^{\prime}} \mathcal{D} \mu\left(\mathbf{z}\left(\tau^{\prime}\right), \overline{\mathbf{z}}\left(\tau^{\prime}\right)\right) \exp \left[-S_{e f f}\right]
$$

$f \in(0,1)$.

$$
S_{e f f}=\int_{0}^{t} d \tau\left(\sum_{m} \dot{z}_{m} \bar{z}_{m}+\mathfrak{h}(\mathbf{z}, \overline{\mathbf{z}})\right)-\log \left(\left(\sum_{k=1}^{M} z_{k}(t)\right)^{f M} \bar{z}_{1}^{M}(0)\right)
$$

Note the difference in the boundary terms.

## Laplace approximation for the path integral

- Laplace formula:

$$
P\left(N_{t}=1\right) \sim \exp \left\{-S_{e f f}\left[z^{c}, \bar{z}^{c}\right]\right\}
$$

- Here $\left(z_{m}^{c}(\tau), \bar{z}_{m}^{c}(\tau)\right)$ solve $\delta S_{e f f}=0$ subject to:

$$
\begin{gathered}
z_{m}(0) \bar{z}_{m}(0)=M \delta_{m, 1}, z_{m}(t) \bar{z}_{m}(t)=\delta_{m, M} \text { (Fast gelation) } \\
z_{m}(0) \bar{z}_{m}(0)=M \delta_{m, 1}, \quad \sum_{k=1}^{M} z_{k}(t) \bar{z}_{m}(t)=f M \text { (Non-gelation) }
\end{gathered}
$$

- General applicability condition: the PI is dominated by trajectories close to the instanton trajectory


## Euler-Lagrange (instanton) equations

$$
\begin{aligned}
& \dot{z}_{m}=\frac{1}{2} \sum_{m_{1}, m_{2}} \lambda_{m_{1}, m_{2}}\left(\delta_{m, m_{1}+m_{2}}-\bar{z}_{m_{1}} \delta_{m, m_{2}}-\bar{z}_{m_{2}} \delta_{m, m_{1}}\right) z_{m_{1}} z_{m_{2}} \\
& \dot{\bar{z}}_{m}=-\frac{1}{2} \sum_{m_{1}, m_{2}} \lambda_{m_{1}, m_{2}}\left(\bar{z}_{m_{1}+m_{2}}-\bar{z}_{m_{1}} \bar{z}_{m_{2}}\right)\left(z_{m_{1}} \delta_{m, m_{2}}+z_{m_{2}} \delta_{m, m_{1}}\right)
\end{aligned}
$$

- Integrals of motion:
- $E=\mathfrak{h}\left(z^{c}, \bar{z}^{c}\right)$ ('Instanton energy')
- $M=\sum_{m} m z_{m}^{c} \bar{z}_{m}^{c}$ (Mass)
- Special solution: $\bar{z} \equiv 1 ; z$ solves Smoluchowski equation, $E=0$
- $N_{m}(t)=z_{m}(t) \bar{z}_{m}(t)$ - the symbol of the occupation number operator


## On the calculation of $\inf \left[S_{e f f}\right]$

- Claim. $S_{e f f}^{c}=-E \cdot t+$ boundary terms
- Derivation: $\mathfrak{h}(\mathbf{z}, \overline{\mathbf{z}})$ is homogeneous function of z of order 2:

$$
\begin{aligned}
& \int_{0}^{t} d \tau\left(\sum_{m=1}^{M} \dot{z}_{m} \bar{z}_{m}+\mathfrak{h}\right) \\
= & \left.\sum_{m=0}^{M} z_{m} \bar{z}_{m}\right|_{0} ^{t}+\int_{0}^{t} d \tau\left(-\sum_{m=1}^{M} z_{m} \frac{\partial \mathfrak{h}}{\partial z_{m}}+\mathfrak{h}\right) \\
= & \left.\sum_{m=0}^{M} z_{m} \bar{z}_{m}\right|_{0} ^{t}-E(t) t
\end{aligned}
$$

- N.B. $E=0$ corresponds to mean field


## Fast and slow gelation probabilities: the constant kernel

## The large deviations principle for fast gelation.

The limit: $t \ll 1, M=\infty$

$$
\log P\left(N_{\tau}\right) \sim-\frac{S_{e f f}^{c}}{\tau}+\log \left(\frac{z_{M}(1) \bar{z}_{1}^{M}(0)}{\tau}\right)
$$

where

$$
\begin{aligned}
S_{e f f}^{c}= & \inf _{\{z(t), \bar{z}(t)\}} \int_{0}^{1} d \tau\left[\sum_{m} z_{m}^{\cdot} \bar{z}_{m}+\mathfrak{h}(z, \bar{z})\right] \\
& \left\{\begin{array}{l}
z_{m}(0+) \bar{z}_{m}(0+)=\infty \cdot \delta_{m, 1} \\
z_{m}(1-) \bar{z}_{m}(1-)=0
\end{array}\right.
\end{aligned}
$$

Solving the instanton equations.

- Euler-Lagrange equation for $N(\tau)=\sum_{m} z_{m}(\tau) \bar{z}_{m}(\tau)$ :

$$
\dot{N}(\tau)=-\frac{1}{2} N^{2}(\tau)+E
$$

- Boundary conditions: $N(0)=\infty, N(1)=0$
- $E=-\frac{p^{2}}{2}<0$
- $N(\tau)=p \tan \left(\frac{p}{2}\left(\tau-\tau_{0}\right)\right)$
- $E=-\frac{\pi^{2}}{2}$
- Rate function: $\log P\left(N_{t}=1\right) \sim-\frac{\pi^{2}}{2 t}+O\left(t^{0}\right)$
- Really hard step: the estimate of the contribution from the boundary terms


## Statistics of mass flux

- Non-equilibrium 'turbulent' state: constant flux of mass through mass scales of the system.
- The average mass flux: $J=M / \tau$ (random quantity)
- Mean field flux: $J_{m f}=M / T_{G}=M$.
$P\left(J>J_{+}\right)=\operatorname{Pr}\left(\tau<\frac{M}{J_{+}}\right)=\operatorname{Pr}\left(N_{M / J_{+}}=1\right) \stackrel{J_{+} \rightarrow \infty}{\sim} e^{-\frac{\pi^{2}}{2} \frac{J_{+}}{J_{m f}}}$
- Left tail of flux distribution:
$P\left(J<J_{-}\right)=\operatorname{Pr}\left(\tau>\frac{M}{J_{-}}\right) \sim \operatorname{Pr}\left(N_{M / J_{-}}=2\right)^{J_{-} \rightarrow 0} e^{-\frac{J_{m f}}{J_{-}}}$
- Fluctuation relation: $\log \left(\frac{\operatorname{Pr}\left(J>J_{m f} L\right)}{\operatorname{Pr}\left(J<J_{m f} / L\right)}\right) \stackrel{L \rightarrow \infty}{\sim}\left(1-\frac{\pi^{2}}{2}\right) L$


# Fast gelation and the non-gelling probability: the multiplicative kernel 

## Fast gelation event

- Typical gelation time: $T_{G}=\frac{\text { Const }}{M}$
- The scaling limit: $M$ is fixed, $t=\theta / M, \theta \ll 1$
- Small time LD principle still applies: $\log \operatorname{Pr}\left(N_{t}=1\right) \sim-\frac{1}{t} S_{e f f}+$ boundary terms
- Equations of motion:
- $\dot{N}(\tau)=E-\frac{M^{2}}{2}, 0<\tau<t$
- $N(0)=M, N(t)=1$
- Instanton energy: $E=\frac{M^{2}}{2}+\frac{1-M}{t}$
- Boundary terms dominate
- $\log P\left(N_{t}=1\right) \sim-M \log \left(\frac{1}{\theta}\right)+O\left(\theta^{0}\right) \Rightarrow$ Algebraic decay of gelation probability


## LDP for $P\left(N_{t}=f M\right), f \in f(0,1)$

- Scaling limit: $M \rightarrow \infty, t=\theta / M, \theta \sim 1$
- LD principle:

$$
\frac{1}{M} \log \operatorname{Pr}\left(N_{\frac{\theta}{M}}=f M\right)=-I(\theta)+O(\log (M) / M)
$$

- Rate function: $I(\theta)=\frac{1}{2}\left(\theta-\theta_{m f}(f)\right)-\frac{\theta_{m f}(f)}{2} \log \left(\theta / \theta_{m f}(f)\right)$
- $\theta_{m f}(f)=2(1-f)$ - mean field time to $N=f M$. Potential non-analyticity!



## A note for mathematicians.

- ML model can be restated as a stochastic differential equation driven by Poisson noise
- All scaling limits considered in the presentation correspond to the limit of weak noise
- All large deviation principles discussed in the talk follow from the standard Wentzel-Freidlin theory for SDE's with Poisson noise.


## Conclusions

- Large deviations turned out to be an effective tool in the analysis of aggregation
- Rate function=Instanton energy $\times$ time + boundary terms
- Instanton energy $=0$ corresponds to MF approximation
- Instanton equations: Mean field equation = Optimal noise fluctuation
- Solutions to instanton equations are globally well defined even for gelling kernels
- Reference: Colm Connaughton, Roger Tribe, Oleg Zaboronski On the statistics of rare events in Markus-Luzhnikov model, still in preparation

