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Markus-Luzhnikov model

#® Microstate: N = Ny, No, .. T

® N, = # of particles of
mass m € {1,2,3,...}

# Coagulation:
® Ny, — Ny, — 1
o Ny, = Ny, — 1
® Npivms = Nypgm, +1

Classical kernels:

Ak, 1) =1 (Constant)

A(k,1) = kI (Muluplicative) ¢ Rate: \(m1,m2) N, Non,
A(k,1) = (k+1)/2 (Sum)
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Problem statement

Monomer initial condition: N,,(0) = Md(m, 1)
Mass conservation > . mN,,(t) = M
Complete gelation event: N,,(t) = d(m, M)

s Equivalently, N(1) < S N (t) =1
Gelationtime: Tg =E(7 | N, = 1)

Find: Prob(N, =1) fort << Tg

Find: Prob(N; >> 1) fort > Tg

|
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Smoluchowski (mean field) theory

— N(m) Y A(m,m/)N(m')
m/=1
- Smoluchowski equation (SE)

# Can be rigorously related to ML model in the scaling
limit N; — oo for certain kernels

# Cannot be used to describe complete gelation (/V; ~ 1)

# Suffers from finite time singularities for some kernels (e.
L g. the multiplicative kernel) J
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The formalism
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Path integral expression forP(N; = 1)

- -
P(Ny=1) /HD/L ),Z(7")) exp[— Seft)

Seft = /0 dr (Z 2 Zm + h(z,Z)) — log (zM(t)Z{W(O))

m

_ 1 _ o
[)(Z, Z) — _5 Z )‘ml,m2 (Zm1+m2 — Zmlzm2)zmlzm2

mi, M2

Method: Doi-Zeldovich-Ovchinnikov. Note the presence

Lof boundary terms. J
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Path integral expression forP(N;, = fM)

- N

P(Ny = fM) = ), 2(7")) exp[—Sey].
fe(0,1).
t M M
Seff = / dr (szzm+h(z,z)> — log (sz@)) zM(0)
0 m k=1

Note the difference in the boundary terms.
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Laplace approximation for the path integral

Laplace formula:

P(Nt — 1) ~ exp{—Seff[zC, ZC]}

Here (2¢ (7), z5 (7)) solve 5S€ff = () subject to:

2m(0)2m(0) = Mom.1, 2m(t)Zm(t) = om s (Fast gelation)
M

2m(0)Zm(0) = M1, Y 2(t)Zn(t) = fM (Non-gelation)
k=1

General applicability condition: the Pl is dominated by
trajectories close to the instanton trajectory J
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Euler-Lagrange (instanton) equations

. 1 _ _
cm — A E )\ml,mg (5m,m1+m2 — Zmy 5m,m2 — Zmzém,ml) £m1“ma

mi,mso

. 1 _ L
“m = _5 § )‘ml,mz (Zm1+m2 — Zmlzmz)(zmlém,mz - Zmzém,ml)

mi, Mo

# Integrals of motion:
s E =h(z¢ z° (Instanton energy’)
s M=) mzz, (Mass)

#® Special solution: z = 1; z solves Smoluchowski
equation, £ =0

® N, (t) = zn(t)zZn(t) - the symbol of the occupation

L number operator J
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On the calculation of in f[S. /]

- » Claim. 57, = —E -t + boundary terms o

o Derivation: h(z,z) is homogeneous function of z of
order 2:

m=1
M i M
o
= |t
— m~m d — ma_
S v [ (3 )
m=0 m=1
M
= Y zwZm o —E()
m=0

L’ N.B. F = 0 corresponds to mean field J
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- N

Fast and slow gelation probabillities:
the constant kernel



The large deviations principle for fast gelation.

-

Thelimit: t << 1, M = ©

log P(N;) ~ — cf] + log (ZM(1)2¥(0)> |

where
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Solving the instanton equations.
Euler-Lagrange equation for N(7) = > 2y (7)Zm(7): T

N(r) = —%NZ(T) + F,

Boundary conditions: N(0) = oo, N(1) =0

E=-L <0
N(7) = ptan (g(T — 7'()))
s b = —%2

Rate function: log P(N; = 1) ~ —g—i +O(tY)

Really hard step: the estimate of the contribution from
the boundary terms

|
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Statistics of mass flux

f.o Non-equilibrium "turbulent’ state: constant flux of mass T
through mass scales of the system.

# The average mass flux: J = M/7 (random quantity)
o Mean field flux: J,,; = M/Tqg = M.

M
P(J>J_|_):PI'(T<J—>:PI'(NM/J+: ) ~ e 2 I
i

o Left tail of flux distribution:

M

P(J<J):PT<T>J—> NPT(NM/J_:

# Fluctuation relation: log (&f}ff@?%) L0 (1 _ ”—2) L
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Fast gelation and the non-gelling
probabllity: the multiplicative kernel



°

°

Fast gelation event

Const

M
The scaling limit: M is fixed, t = 6/M, 0 << 1

Small time LD principle still applies:
log Pr(Ny = 1) ~ —1S. ¢+ boundary terms

Typical gelation time: Tz =

Equations of motion:
. N(T):E—MT2,O<T<75

s N(0)=M, N(t)=1
: M? | 1-M
Instanton energy. £ = =~ + ——

Boundary terms dominate

log P(N; = 1) ~ —Mlog (5) + O(6°) = Algebraic decay
of gelation probability J
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LDP for P(N, = fM), f € £(0,1)

Scaling limit: M — oo, t =0/M, 0 ~ 1 T
LD principle:

1
i log Pr (N%

fM) —1(8) + O(log(M) /M)

Rate function: 1(6) = 1(0— 0,,+(f)) — 2L 10g(0 /6, ()

Omyr(f) = 2(1 — f)- mean field time to N = fM. Potential
non-analyticity!

Mean field evolution of density

1 I I I I
\
4\ Finite time singularity
0.5
Ne/M \f \ /
0 \;
6(f)
5 | | |
0
0
Rate function for f=1/2
% I I
1.5 : —
16 1) _
8.(f)
0.5} _|
0 ‘ >
0 0.5 1 15 2
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A note for mathematicians.

-

f.o ML model can be restated as a stochastic differential
equation driven by Poisson noise

# All scaling limits considered in the presentation
correspond to the limit of weak noise

# All large deviation principles discussed in the talk follow
from the standard Wentzel-Freidlin theory for SDE’s
with Poisson noise.

o |
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Conclusions

-

Large deviations turned out to be an effective tool in the
analysis of aggregation

Rate function=Instanton energy xtime+boundary terms
Instanton energy= 0 corresponds to MF approximation

Instanton equations: Mean field equation = Optimal
noise fluctuation

Solutions to instanton equations are globally well
defined even for gelling kernels

Reference: Colm Connaughton, Roger Tribe, Oleg
Zaboronski On the statistics of rare events in
Markus-Luzhnikov model, still in preparation J
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