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Current fluctuations in exclusion processes

The (a)symmetric exclusion process (ASEP) with open boundaries
(N sites)

α β

γ δ

pq pq q

Densities of reservoirs at the boundary

ρa =
α

α+ γ
ρb =

δ

β + δ

Each realisation of the stochastic process can be characterised by the
total number of particles QT passing through the system for T � 1.

Carlo Vanderzande DMRG-approach to large deviations



Current fluctuations in exclusion processes

The average and fluctuations of QT can be determined from the
cumulant generating function

µ(s, L) = lim
T→∞

1

T
ln〈esQT 〉

by taking derivatives at s = 0.

Thermodynamics of histories or s-ensemble - Weight histories of the
process with esQT

1 s = 0 : typical histories
2 |s| � 1: histories with a very large current

By tuning s we can study rare events
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The symmetric exclusion process

For the symmetric exclusion process (p = q = 1/2) one has 1

µ(s, L) =
1

N
M(s) +

1

8N2
F(−4M(s)) +

1− a− b
N2

M(s) +O(N−3)

1 M(s) is a known analytical function 2

2 F is a universal function with a singularity at π2/2
3 The third term is non-universal (a = 1/(α+ γ), b = 1/(β + δ))

The singularity of F is reached when M(s) < −π2/8

For the SSEP the singularity is never reached - no dynamical phase
transition

No exact results for q 6= p and open boundaries → need for a
numerical approach that can reach large N -values and gives precise
results

1A. Imparato, V. Lecomte and F. van Wijland, PRE 80, 011131 (2009)
2B. Derrida, B. Douçot and P.-E. Roche, J. Stat. Phys. 115, 717 (2004)
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DMRG-approach

Markov evolution P (C, t)

∂tP (C, t) =
∑
C′

H(C,C ′)P (C ′, t)

The generator H of the ASEP can be mapped onto a quantum spin
chain (XXZ-model).

The stationary state corresponds to the ground state of −H.

The stationary state of one-dimensional stochastic many particle
systems is a matrix product state (MPS).

The density matrix renormalisation group (DMRG) (White, 1992) is
the most precise numerical technique to determine ground state
properties of quantum (spin) chains.

It corresponds to a variational optimisation over MPS-states
(Dukelsky et al., 1998).

First applications of DMRG to stochastic problems: Hieida (1998),
Carlon et al. (1999).

Carlo Vanderzande DMRG-approach to large deviations



DMRG-approach

Cumulant generating function

µ(s,N) = λ(s,N)

where λ(s,N) is the largest eigenvalue of a generalised generator

Hs(C,C
′) = H(C,C ′)esα(C,C

′) C 6= C ′

and α(C,C ′) = +1(−1) if a particle leaves (enters) the system on
the right when C ′ → C.

Expectation values like the density ρi at site i

ρi(s,N) = 〈L0|n̂i|R0〉

with 〈L0| and |R0〉 the left and right eigenvector associated to the
largest eigenvalue of Hs

First application of DMRG to current/activity fluctuation: M.
Gorissen, J. Hooyberghs and C.V., PRE 79, 020101 (2009).
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DMRG-approach

Problem Dimension of vector space = 2N - puts a limit to system
size that can be studied by exact diagonalisation

DMRG technique
1 RG-idea: eliminate variables → ”choose” m (< 2N ) vectors and

project H (Hamiltonian, generator) in space spanned by these vectors
2 How to choose these m vectors : use the density-matrix

L = 8

ρ ρ

L = 10

(l) (r)
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DMRG-approach

DMRG-algorithm

1 Take a system with N even, ”Hamiltonian” HN : calculate ground
state |ψ0〉 - density matrix ρ = |ψ0〉〈ψ0|
For stochastic systems: symmetric combination of projection on left
and right eigenvectors

2 Construct left and right reduced density matrices

ρ(l) = Tr′r ρ ρ(r) = Tr′l ρ

3 Take the m eigenvectors of ρ(l) (ρ(r)) with largest eigenvalue:
|ϕl〉1, . . . , |ϕl〉m (|ϕr〉1, . . . , |ϕr〉m)

4 Add two extra sites i and i+ 1 in the middle of the system: project
HN+2 in the space spanned by
{|ϕl〉1, . . . , |ϕl〉m, |±〉N/2+1, |±〉N/2+2, |ϕr〉1, . . . , |ϕr〉m}

Reduction of ”number of degrees of freedom” : 2N+2 → 4m2
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Results I : The weakly asymmetric exclusion process

p = 1/2 + ν/(2N), q = 1/2− ν/(2N) (ν > 0) : diffusive model

We determined M(s) using the additivity principle 3

Comparison with DMRG results for N up to 120.
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3Bodineau and Derrida, PRL 92 180601 (2004)
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Results I : The weakly asymmetric exclusion process

Is there a dynamical transition?
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No dynamical transition for parameter values investigated.

Carlo Vanderzande DMRG-approach to large deviations



Results I : The weakly asymmetric exclusion process

Is the universal function F appearing in this diffusive model ?
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Finite size corrections are not described by the universal function F .
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Results I : The weakly asymmetric exclusion process

Corrections are 1/N2 as can be expected for a diffusive model

µ(s,N) =
1

N
M(s) +

1

N2
H(s) +O(N−3)
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Results I : The weakly asymmetric exclusion process

Density profile corresponding to a large current
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Results I : The weakly asymmetric exclusion process

Density profile corresponding to a small current
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Reference: M. Gorissen and C.V., arxiv.org/abs/1201.6264
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Results II: The totally asymmetric exclusion process

For the TASEP (p = 1, q = 0) numerical results indicate 4

µ(s,N) =
s

4
+

1

N3/2
G(sN1/2,∆αN1/2)

with ∆α = α− 1/2, the distance to the low-density/maximal
current phase transition.
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Figure 5. Mean-field phase diagram for the ASEP showing the range of α and β in which the
low-density (LD), high-density (HD) and maximal-current (MC) phases are seen.

where, as above, ρ1 and ρ2 are the densities on either side of the shock. Thus, the kinematic
wave velocity is negative when ρ > 1/2 and the shock velocity is negative when ρ1 > 1 −ρ2.

The kinematic wave theory can be used to predict the phase diagram of the open-boundary
ASEP, in which distinct steady-state behaviours are demarcated (figure 5). The left-hand
boundary x = 0 is considered as a reservoir of particle of density ρl = α and the right-hand
boundary (x = N + 1) as a reservoir of density ρr = 1 − β. Associated with these boundary
densities are kinematic waves with velocities

vl = 1 − 2α vr = 2β − 1. (2.11)

In the case where α < 1/2 and β < 1/2 both kinematic waves propagate into the system. So,
for example, from an initially empty system the kinematic waves of densities α and 1 −β will
enter from the left and right of the system and meet somewhere in the middle forming a shock
which then moves with velocity

vs = β − α. (2.12)

If β > α the shock moves to the right-hand boundary and density associated with the left-hand
boundary, ρl = α, is adopted throughout the bulk of the system. On the other hand if α < β the
shock moves to the left-hand boundary and density associated with the right-hand boundary,
ρr = 1 − β, is adopted throughout the bulk of the system.

In the case α = β < 1/2, vs = 0 and the shock is stationary. In the stochastic system the
shock, although on average stationary, diffuses around the system and effectively reflects off
the boundaries. The result is that the shock is equally likely to be anywhere in the system.

In the case where one of α or β > 1/2, the kinematic wave associated with that boundary
does not propagate into the system and the kinematic wave which does propagate from the
other boundary controls the bulk density. Thus, the boundary with α or β < 1/2 controls the
bulk density

Finally if both α,β > 1/2, the kinematic waves from both boundaries do not penetrate.
To describe this phase one needs to add a diffusive contribution to the current (2.9), i.e., to
consider second-order spatial derivative of ρ which we shall do in the next section. The result
is that the steady state of the system has density 1/2; the system adopts the maximal current
density ρm = 1/2 which is the density associated with kinematic wave velocity zero.

The resulting bulk densities and currents are then as shown in table 1 which corresponds
to the phase diagram given in figure 5. Here we have adopted what has become the standard
nomenclature for the three phases—the terminology should hopefully be self-explanatory.

4M. Gorissen and C.V., J. Phys. A, 44, 115005 (2011)
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Results II: The totally asymmetric exclusion process

The current shows a dynamical phase transition
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From the scaling form for µ(s,N) one finds that the k-th cumulant
of the current in the MC-phase scales as

〈QkT 〉c ∼ Nk/2−3/2

Lazarescu and Mallick (J. Phys. A, 44, 315001 (2011)) have
conjectured a parametric representation of the current cumulant
generating function for the TASEP.

Check with DMRG through numerical differentiation of µ(s,N)
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Results II: The totally asymmetric exclusion process
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Conclusions

The DMRG is a precise numerical tool that can be used to calculate
cumulant generating functions, density profiles, gaps, ... for
one-dimensional non-equilibrium models with discrete variables.

Allows to formulate/verify finite size scaling theories

Use of tDMRG to investigate time-dependent behavior?
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