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Current fluctuations in exclusion processes

@ The (a)symmetric exclusion process (ASEP) with open boundaries
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@ Densities of reservoirs at the boundary
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@ Each realisation of the stochastic process can be characterised by the
total number of particles Q7 passing through the system for T > 1.
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Current fluctuations in exclusion processes

@ The average and fluctuations of Q7 can be determined from the
cumulant generating function
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by taking derivatives at s = 0.

@ Thermodynamics of histories or s-ensemble - Weight histories of the
process with 5@

© s =0 typical histories
@ |s| > 1: histories with a very large current

By tuning s we can study rare events
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The symmetric exclusion process

e For the symmetric exclusion process (p = ¢ = 1/2) one has !
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@ M(s) is a known analytical function 2
@ F is a universal function with a singularity at 72/2
© The third term is non-universal (a =1/(a+7), b=1/(8+9))
@ The singularity of F is reached when M(s) < —72/8

@ For the SSEP the singularity is never reached - no dynamical phase
transition

@ No exact results for g # p and open boundaries — need for a
numerical approach that can reach large N-values and gives precise
results

1A, Imparato, V. Lecomte and F. van Wijland, PRE 80, 011131 (2009)
2B. Derrida, B. Dougot and P.-E. Roche, J. Stat. Phys. 115, 717 (2004)
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DMRG-approach

e Markov evolution P(C,t)

0,P(C,t) =Y H(C,C")P(C',1)
=

@ The generator H of the ASEP can be mapped onto a quantum spin
chain (XXZ-model).

@ The stationary state corresponds to the ground state of —H.

@ The stationary state of one-dimensional stochastic many particle
systems is a matrix product state (MPS).

@ The density matrix renormalisation group (DMRG) (White, 1992) is
the most precise numerical technique to determine ground state
properties of quantum (spin) chains.

@ It corresponds to a variational optimisation over MPS-states
(Dukelsky et al., 1998).

o First applications of DMRG to stochastic problems: Hieida (1998),
Carlon et al. (1999).
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DMRG-approach

@ Cumulant generating function

(s, N) = A(s, N) |

where \(s, V) is the largest eigenvalue of a generalised generator
H,(C,C") = H(C,C")e** () C#C

and o(C,C") = +1(-1) if a particle leaves (enters) the system on
the right when ¢’ — C.

o Expectation values like the density p; at site ¢

pis, N) = (Lo|i| Ro) |

with (Lg| and |Rp) the left and right eigenvector associated to the
largest eigenvalue of H

o First application of DMRG to current/activity fluctuation: M.
Gorissen, J. Hooyberghs and C.V., PRE 79, 020101 (2009).
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DMRG-approach

@ Problem Dimension of vector space = 2V - puts a limit to system
size that can be studied by exact diagonalisation
e DMRG technique
© RG-idea: eliminate variables — " choose” m (< 2™) vectors and
project H (Hamiltonian, generator) in space spanned by these vectors
© How to choose these m vectors : use the density-matrix
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DMRG-approach

DMRG-algorithm

© Take a system with N even, "Hamiltonian” Hp: calculate ground

state [to) - density matrix p = |¢g) (¢o]
For stochastic systems: symmetric combination of projection on left
and right eigenvectors

@ Construct left and right reduced density matrices
p =Trl p p =Tr p

© Take the m eigenvectors of p() (p(’")) with largest eigenvalue:
|90l>17 L) |<pl>m (|90T>17 ceey |90T>m)

© Add two extra sites ¢ and i + 1 in the middle of the system: project
Hpy 42 in the space spanned by

{|@l>17 ) |(Pl>m7 |i>N/2+1’ H:>N/2+27 |90T>17 ) |§0T>m}

Reduction of " number of degrees of freedom” : 2N+2 — 4m?
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Results | : The weakly asymmetric exclusion process

e p=1/24v/(2N), ¢=1/2—v/(2N) (v > 0) : diffusive model
e We determined M (s) using the additivity principle 3
@ Comparison with DMRG results for N up to 120.
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3Bodineau and Derrida, PRL 92 180601 (2004)
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Results | : The weakly asymmetric exclusion process

@ Is there a dynamical transition?
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@ No dynamical transition for parameter values investigated.
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Results | : The weakly asymmetric exclusion process

@ Is the universal function F appearing in this diffusive model ?
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o Finite size corrections are not described by the universal function F.
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Results | : The weakly asymmetric exclusion process

e Corrections are 1/N? as can be expected for a diffusive model

(s, N) = M (s) +

5 H(s) + O(N )

(u(s,N) - 1/N M(s))N?
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Results | : The weakly asymmetric exclusion process

Density profile corresponding to a large current
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v =10,pa = 4/7, pp = 5/18,5 = 5.1214..., s = 10
(typical current: j* = 2.5845...)
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Results | : The weakly asymmetric exclusion process

Density profile corresponding to a small current
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v=10,p, = 4/7, p, = 5/18,j = 0.00041..., s = —10
Reference: M. Gorissen and C.V., arxiv.org/abs/1201.6264
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Results |I: The totally asymmetric exclusion process

@ For the TASEP (p = 1,q = 0) numerical results indicate *

s 1
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(s, N) G(sN/? AaN'/?)

with Aa = a — 1/2, the distance to the low-density/maximal
current phase transition.
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4M. Gorissen and C.V., J. Phys. A, 44, 115005 (2011)



Results |I: The totally asymmetric exclusion process

@ The current shows a dynamical phase transition
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@ From the scaling form for p(s, N') one finds that the k-th cumulant
of the current in the MC-phase scales as

<Q’%>c ~ Nk/2—3/2

o Lazarescu and Mallick (J. Phys. A, 44, 315001 (2011)) have
conjectured a parametric representation of the current cumulant
generating function for the TASEP.

@ Check with DMRG through numerical differentiation of u(s, N)



Results |I: The totally asymmetric exclusion process
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Conclusions

@ The DMRG is a precise numerical tool that can be used to calculate
cumulant generating functions, density profiles, gaps, ... for
one-dimensional non-equilibrium models with discrete variables.

o Allows to formulate/verify finite size scaling theories
@ Use of tDMRG to investigate time-dependent behavior?
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