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The evolution of many dynamical systems can be viewed as a navigation on an 
energy or free energy landscape. 

The system tends to spend long period of time in the regions of low energy, and 
it only rarely makes transition from one such region to another (metastability).

These transitions often are the most interesting part of the dynamics:

• kinetic phase transitions;

• conformation changes in macro-molecules;

• chemical reactions;

• regime changes in climate;

• etc.

Understanding the long time dynamics of these systems is a challenge, both from 
theoretical and computational viewpoints.
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{

Q̇ = P,

Ṗ = Q − Q3 + P +
√

2ε Ẇ (t)
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Origin of metastability 
= dynamical bottlenecks of energetic and/or entropic origin which confine the 
system in localized regions in phase-space ( = metastable states)

Simple example: dx(t) = �⇥V (x(t))dt +
�

2��1 dW (t)

Examples of this type fit the framework of large deviation (LD) theory.                                                           
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Large deviation theory: (Wentzell-Freidlin)

dx(t) = �⇥V (x(t))dt +
�

2��1 dW (t)

Assume that V(x) is a Morse function with growth condition at infinity.

Then dynamics is ergodic w.r.t. the invariant measure

dµ(x) = C�1 exp(��V (x))dx

When β →∞ this measure becomes atomic on the minima of V(x)

Dynamics can be reduced to a continuous-time Markov chain (random walk on a 
network) by mapping the trajectory x onto the index of a small ball around the last 
local minimum it visited

- rate of transitions are related to energy barriers and exponentially small in β;
- pathways of transitions are predictable and follow minimum energy paths solution of 

0 = [�V (�)]�

One issue becomes computational: how to calculate the relevant object of LD theory 
in complicated systems (e.g. stochastic PDEs) - more on this below.

Can be generalized to nonequilibrium systems.
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Example: solvated alanine dipetide:

12 point particles ( = atoms ) + 252 water molecules (i.e. a dynamical system 
with about 1e3 degrees of freedom). 
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Calculations by Luca Maragliano.
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Another issue is that LDT is not directly applicable to more complicated examples
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Energy landscape is typically rugged, i.e.

There are many features of the potential on small scales (e.g. many critical points) 
which are mostly irrelevant for the rare events. What matters are large scale 
features (& LD theory does not apply directly).

Example: Rugged Mueller potential

dx(t) = �⇥V (x(t), ⇥)dt +
�

2��1 dW (t) V (x, ⇥) = V0(x) + ⇥V1(x/⇥)

More difficult if ε ≈ β-1 
small but finite.

and ...

Tuesday, June 12, 12



Entropic (i.e. volume) effects matter, presence of dead-ends, dynamical traps, etc.

Example: a maze

Hard to understand by simple inspection even if the trajectory is given.
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More general definition of metastability based on spectral theory:

Metastability = presence of one or more groups of small eigenvalues of the generator of the 
dynamical process.

These small eigenvalues correspond to processes arising on long timescales. 

How can one single out and analyze a specific reaction?

(Dellnitz, Schuette et al., Bovier et al., Kurchan, ...)

Global viewpoint on metastability that can 
be hard to make practical because longest 
time scales may not be the most relevant 
ones (e.g. due to presence of deadends or 
dynamical traps), there may be many of 
them (subgroups into groups), etc.
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Key concept: reactive trajectories, i.e. those trajectories by which the reaction occurs.

Conceptually, these reactive trajectories can be obtained by pruning a long ergodic 
trajectory which oscillates between A and B.

A B

Understanding the mechanism of the reaction 
= characterizing the statistical mechanics properties of the reactive trajectories 
(i.e. the red pieces in the figure)

Transition Path Theory (E, V.-E.)

Note that A and B are arbitrary and there is no small parameter needed at this point!
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Discrete set-up:     pij = probability that x(t+1) = j given that x(t) = i

Detailed balance:     πi  pij = πj  pji          (πi = equilibrium distribution)

Two key questions:

where qi is the committor function (aka pfold) which gives the probability that the 
trajectory starting from i will reach next the product rather than the reactant.

What is the equilibrium probability πiR  to find the trajectory at state 
i and that it be reactive?

⇡R
i = ⇡iqi(1� qi)

What is the probability current of reactive trajectories from state i to 
state j?

fR
ij = max{fij � fji, 0} where fij = (1� qi)⇡ipijqj
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The maze example:
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The committor function is the reaction coordinate because it permits (along with 
the equilibrium probability) to express all the statistical properties of the reactive 
trajectories and compute the reaction rate.

The probability current, in particular, links concepts of reaction coordinate to that of 
transition pathway. 

Probability density of reactive trajectories:

Probability current of reactive trajectories: 

Can be generalized to diffusions: dx(t) = �⇥V (x(t))dt +
�

2��1 dW (t)

⇢

R

(x) = lim
T!1

1

T

Z
T

0
�(x� x(t))1

R

(t)dt = C

�1
e

��V (x)
q(x)(1� q(x))

j

R

(x) = lim
T!1

1

T

Z
T

0
�(x� x(t))1

R

(t) ẋ(t)dt| {z }
=�dx(t)

= C

�1
e

��V (x)rq(x)
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in rugged Mueller potential

Tuesday, June 12, 12



Permit to erase deadends, account for entropic switches ...
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Figure 10. Probability current. For sake of visualization I com-
puted the current in a low resolution
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Figure 11. Streamlines colored according to the restricted inten-
sities on the committor at ”low temperature” � = 0.2.
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Figure 12. Streamlines colored according to the restricted inten-
sities on the committor at ”low temperature” � = 0.6.
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Figure 13. Here one can see the switching of the preferable tran-
sition tubes.
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rate (committor) 1.912·10°2

rate (volume integral) 1.924·10°2

rate (DNS) 2.079 · 10°2

var(DNS) 1.33·10°6

Table 2. Transition Rate(� = 0.6, 400⇥ 400Grid,N = 1000, ⇥ = 10°5)

3.2. Schulten-Potential. Now we consider the Smoluchowsky dynamics in a sim-
ple potential which exhibits metastability. This model system was first introduced
and studied in (?).
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Figure 5. Contour plot of the potential
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The main issue becomes the computation and analysis of the committor function q(x).

For complex systems it can be done by direct manipulations on the equation for 
q(x) under specific assumption (e.g. small temperature, localized tubes 
concentrating the flux of reactive trajectories, etc.)

This approach is the one taken in the string method (E, Ren, V.-E.) based on:

Variational formulation:    The committor function is the minimizer of:
�

�
e��V (x)|⇥q(x)|2dx,

among all q(x) such that q(x) = 0 in A and q(x) = 1 in B.
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Lower bound argument to find the flowline of max-flux: 

Given a curve ⇥ connecting A and B, let B⇤ = {x : d(x, ⇥) ⇥ ⇤}.

⇤

�
e��V (x)|⇧q(x)|2dx ⇥

⇤

B⇤

e��V (x)|⇧q(x)|2dx

⇥
⇤

B⇤

e��V (x)|⇥⌅ ·⇧q(x)|2dx

inf
q

⇤

�
e��V (x)|⇧q(x)|2dx ⇥ sup

⇥
inf
q

⇤

B⇤

e��V (x)|⇧q(x)|2dx

⇤ sup
⇥

�⇤

⇥
e�V (⇥)ds

⇥�1

Optimizing the bound:

Finding the flowline of max-flux reduces to the problem of computing a geodesic.

(NB: line of max-flux is the MEP from LD theory in small noise limit)

Given a curve ⇥ connecting A and B, let B⇤ = {x : d(x, ⇥) ⇥ ⇤}.

⇤

�
e��V (x)|⌥q(x)|2dx ⇤

⇤

B⇤

e��V (x)|⌥q(x)|2dx

⇤
⇤

B⇤

e��V (x)|⇥⌃ ·⌥q(x)|2dx

inf
q

⇤

�
e��V (x)|⌥q(x)|2dx ⇤ sup

⇥
inf
q

⇤

B⇤

e��V (x)|⇥⌃ ·⌥q(x)|2dx

⇤⇧1⌅ sup
⇥

�⇤

⇥
e�V (⇥)ds

⇥�1

=

�

inf
⇥

⇤

⇥
e�V (⇥)ds

⇥�1

Given a curve ⇥ connecting A and B, let B⇤ = {x : d(x, ⇥) ⇥ ⇤}.

⇤

�
e��V (x)|⌥q(x)|2dx ⇤

⇤

B⇤

e��V (x)|⌥q(x)|2dx

⇤
⇤

B⇤

e��V (x)|⇥⌃ ·⌥q(x)|2dx

inf
q

⇤

�
e��V (x)|⌥q(x)|2dx ⇤ sup

⇥
inf
q

⇤

B⇤

e��V (x)|⇥⌃ ·⌥q(x)|2dx

⇤⇧1⌅ sup
⇥

�⇤

⇥
e�V (⇥)ds

⇥�1

=

�

inf
⇥

⇤

⇥
e�V (⇥)ds

⇥�1

in collaboration with Masha Cameron.
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NB: maxflux more global object than MEP (and can be generalized to work with 
collective variables, account for the finite width of the transition tube, etc.)
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String method in a nutshell:

Parametrize the curve e.g. by normalized arc-length;
Evolve it using a time-splitting method:

- one step of steepest descent along gradient of objective function (or CG,   
BFGS, etc.);

- one step of interpolation-reparametrization to control the parametrization of 
the curve
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String method in a nutshell:

Parametrize the curve e.g. by normalized arc-length;
Evolve it using a time-splitting method:

- one step of steepest descent along gradient of objective function (or CG,   
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Application: Understanding superparamagnetic limit in sub-micron 
sized ferromagnetic elements 

Main building blocks in Magnetoelectronics (used e.g. as storage devices, 
etc.)

As elements gets smaller, one reaches the superparamagnetic limit, where 
thermal effects become important and  limit data retention time by 
magnetization reversal.

Mechanism of reversal are complex due to nonuniformity in space.

in collaboration with Weinan E (Princeton) and Weiqing Ren (NUS)
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Landau-Lifshitz energy: m : Ω → S
2

E[m] =
η

2

∫
Ω

|∇m|2 + Q

∫
Ω

φ(m) +
1

2

∫
R3

|∇u|2 −

∫
Ω

hext · m

div(−∇u + m) = 0

Dynamics: steepest descent + gyromagnetic rotation at |m|=1

∂m

∂t
= m × heff − αm × (m × heff )

heff = −

δE[m]

δm
+

√

2ε η(x, t)

Non-gradient (i.e. nonequilibrium transitions) but solvable.
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Two metastable states (among others)
= local minimum of LL energy

Permalloy thin film 
(200nm x 200nm x 10nm)

In plane component of magnetization
  blue = right, red = left, 
  yellow = up, green = down
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a)

b)

Sequence of minimum and saddle points identified by string method: 
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Energy:

Permalloy thin film
(200nm x 200nm x 10nm)
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Two paths (MEPs) identified by string method:
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Graph of Markov chain:
    = energy landscape + orbits in projected space
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0.2 0.4 0.7 1.1 1.4Ref.

C

A

B

Chain made of 12 monomers of size 7.2 A solvated in a periodic box of size 99.5 A x 
99.5 A x 116.1 A containing 34,000 rigid water molecules modeled by SPC/E.

Collective variables = monomer positions + local density field
                  - in total over 129,000 collective variables

0.2 0.4 0.7 1.1 1.4Ref.

C

A

B

Application: hydrophobic collapse of a polymeric chain

in collaboration with Tommy Miller (Caltech) and David Chandler (UC Berkekeley)
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MFEP identified by the string method
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Free energy

Dominated by work done by the solvent degrees of freedom.
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Dynamical trajectories initiated from the transition state region

0 ps 30 ps

60 ps 90 ps 150 ps

-30 ps

-150 ps -90 ps -60 ps
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TPT can be generalized to non-gradient systems (i.e. activated processes arising out-
of-equilibrium)

In the low noise limit TPT reduces to LDT (LDT).

Reactions arise by the Maximum Likelihood Path (MLP) which minimizes the 
LDT action.

MLP can be calculated by the Minimum Action Method.
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Simple illustrative example due to Maier and Stein:

W. E, W. Ren & E. V.-E., Comm. Pure App. Math 52, 637-656 (2004);
M. Heymann & E. V.-E., Comm. Pure App. Math 61, 1052-1117 (2008).
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More sophisticated example: phase-transition in the presence of a shear flow

M. Heymann & E. V.-E.  Phys. Rev. Lett. 100, 140601 (2008)

u̇ = �u+ u� u3
| {z }

�DE(u)

+c sin(y)@
x

u+ ⌘
E(u) =

Z

⌦

�
1
2|ru|2 + 1

4 (1� u

2)2
�
dx
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More sophisticated example: phase-transition in the presence of a shear flow

M. Heymann & E. V.-E.  Phys. Rev. Lett. 100, 140601 (2008)

u̇ = �u+ u� u3
| {z }

�DE(u)

+c sin(y)@
x

u+ ⌘
E(u) =

Z

⌦

�
1
2|ru|2 + 1

4 (1� u

2)2
�
dx
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How to use TPT to build Markov State Models (MSM) to analyze 
time-series data?

with Enrico Guarnera and Jianfeng Lu

What can we do with the massive amounts of data generated e.g. by massively 
parallel simulation, special-purpose high-performance computers, and high-
performance GPUs, etc. that are too complicated to be grasped by traditional 
“look and see” analyses?

Examples from molecular dynamics (Pande’s folding@home) or from atmosphere/
ocean sciences (data from observation or from GCM), etc.

Popular approach (Swope, Chodera & Pande, Noe & Schuette):

Reduce the dynamics of a large dimensional system to that of a continuous-time 
Markov chain on a discrete state space, with states that have physical meaning - 
Markov State Modeling 

Can be done for metastable systems but require to properly identify the metastable 
states.
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Consider a discrete MC with state space S that we want to coarsen onto M ⊆ S;

Introduce the following measure of metastability of the states in M (cf Bovier):

⇢M =

maxj2M P(j more likely to first go to M \ {j} rather than return to j)

mini 62M P(i more likely to first go to M rather than return to i)

|�i � �miles
i | < C⇢M , i  |M |

⇢M ⇠ �|M |�1/�|M | 0 = �0 < �1  �2  · · ·  �|M |�1 ⌧ �|M |  · · ·

Thm (Bovier): If            is small then ⇢M

!        measures size of the gap between group of eigenvalues of the chain, and 
measures the quality of the milestoning approximation. 

⇢M

Can be used to select best M via minimization of       .⇢M
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Assumption: The evolution of i(t) can be described by a continuous-time Markov chain.

x(t)

    1x(t  )

x(t  )2

4x(t  )

x(t  )5

    0x(t  )

x(t  )    3

S

S S

S

2

1

3

4

0 1 t5t3t2 t
4

4

t

i(t)

t t

1

2

3

Elber et al. (2004, 2007, etc.), Venturoli and V.-E. (2008, 2011)

x(t) → i(t) = index of last milestones hit by x(t)

MSM via milestoning

Introduce a set of target sets (the milestones) in the state-space of the system 
and assign the trajectory x(t) to the index of the last milestone it hit.
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Trial set
milestones

Core set
milestones

Fast
Relaxations

Slow
Relaxations

How to justify the assumption that the evolution of i(t) can be described by a 
continuous-time Markov chain?

Pick a subset of real milestones among a trial set such that they have a low 
metastability index. 
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Trial set
milestones

Core set
milestones

Fast
Relaxations

Slow
Relaxations

Link with TPT?

TPT gives exact expressions for the 
rates of transition between the core 
milestones.

These are also the limit of the 
maximum likelihood estimator values 
for these rates when the amount of 
data becomes infinite

Makes a link between Bovier’s potential theoretic approach to metastability, inference 
methods (maximum likelihood, Bayesian estimation) used in conjunction with 
milestoning, and TPT.

Can also be related to a specific Galerkin truncation by projection on the space spanned 
by a few committor functions (work with Lu, Noe, Sarich & Schuette).
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than any other milestone belonging to B (i.e. B/B↵) (for
Markov process in the context of Transition Path The-
ory TPT see32). One has

PM
↵=1 q↵(i) = 1 for any Si 2 S.

The committor (8) is calculated from trajectories, in par-
ticular from time sequences of the type

Si0 , Si1 , ..., (B↵0), Sik , Sik+1 , ..., (B↵1), Sin , Sin+1 , ..., SiZS

where B↵0 = Sik�1 and B↵1 = Sin�1 , etc.
The core set B is by construction such that the time

sequence B↵0 , B↵1 , ..., B↵ZB
is approximatively Marko-

vian (⇢B-metastable). However, the Markovianity of
the time sequence B↵0 , B↵1 , ..., B↵ZB

can be further
cross validated by using the committor probabilities
q↵(i). Let us take the time sequence of trial milestones
Sl0 , Sl1 , Sl2 , ..., SlZS

, according to TPT we have

⇡

S
↵ =

X

i2S

⇡

S
i q↵(i) (9)

If the time sequence B↵0 , B↵1 , ..., B↵ZB
is Markovian

then the probability ⇡

S
↵ should be identical with the es-

timated probability ⇡

B
↵ for any B↵ 2 B. Thus, discrep-

ancies in the probabilities ⇡

S
↵ and ⇡

B
↵ provide a further

quality control on the Markov approximation associated
to the core set B.

VI. TRANSITION STATE ENSEMBLE
DETECTION

Given the core set B the definition of committor prob-
ability q↵(i) for any milestone Si 2 S is the natural tool
for the identification of a transition state ensemble TSE.
In case of a core set of size 2 B = {B↵! , B↵2} all the
milestones Si such that q↵1 = 1 � q↵2 ⇡ 0.5 compose
by definition the TSE. For any size larger than 2 of the
core set the 0.5 criteria is not viable anymore because
the TSEs can in general connect multiple states. In or-
der to distinguish the most general TSE we introduce a
quantity called TSE index that is based on the entropy
of the committor probability distribution q↵(i), such thatP

↵2B q↵(i) = 1 for any Si 2 S. We define the degree of
a state Si to be a member of a TSE as

�(i) =

⇢ 1
ln n(i) �

P
↵2B q↵(i) ln q↵(i) n(i) > 1

0 n(i) = 1

(10)

were the sum at the numerator is carried out over non
zero elements and ni is their number. The TSE index
in (10) is nothing else than a normalized entropy of the
committor distribution. It is 1 if the non zero values
of q↵(i) are all degenerate while 0 is only one value of
q↵(i) is different than zero (typically this happens either
for states that are members of the core set or for states
that are along paths always ending to the same core set
member).
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Figure 3: The 1 dimensional multiple well energy landscape
example. All the basins and sub-basins are labeled. The
possible metastable core sets B2 = {1, 2}, B3 = {1, 2, 3}, B9 =
{1, 2, ..., 9} and B27 = {1, 2, ..., 27} are superimposed onto the
energy landscape.

VII. 1-DIMENSIONAL MULTIPLE WELL
EXAMPLE

We first illustrate the method presented above on a
toy model associated to a 1-dimensional (1D) multiple
well energy landscape utilized to generate diffusive tra-
jectories. Figure (3) shows the structure of the analyzed
1D energy landscape with the energy in units of kBT .
The shape of the potential has a hierarchical structure to
mimic a frustrated energy landscape, composed of confor-
mational states and sub-states (for a discussion on energy
landscapes in the context of proteins see for example33).
Three main basin separated by large barriers are subdi-
vided each in three sub-basins, which are additionally
subdivided into three sub-sub-basins for a total of 27
wells.

It is instructive to associate the 1D potential energy
E(x) to a N = 200 discrete state Markov chain with
first neighbor generator L. The analysis of the spectrum
of L (solving the eigenvalue problem L�i = �i�i with
�0 = 0 and �i < 0 for i 6= 0) provides an a priori hint
of what subsets of states are best candidates to capture
the metastability of the 1D model. In particular, the set
of nonzero eigenvalues of the generator L at kBT = 0.5

shows 4 major gaps that correspond to the eigenvalues
ratios �1/�2 = 0.07, �2/�3 = 0.09, �8/�9 = 0.11 and
�26/�27 = 0.26. All the rest of eigenvalues ratios are
larger than 0.7. We have:

• �1/�2 measures the metastability between the two
of the three main basins centered on the states 1
and 2 (core set B2 = {1, 2} in figure 3);

• �2/�3 measures the metastability of the three main
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Figure 4: Overdumped Langevin trajectories of the model
system with potential energy shown in figure(3) at three tem-
peratures (A) 0.5, (B) 0.75 and (C) 1.0. The time sequences
of the metastable core sets B9, B2 and B3 are superimposed
onto the trajectories at temperatures 0.5, 0.75 and 1.0 respec-
tively.

basins centered on the states 1, 2, 3 and core set
B2 = {1, 2, 3};

• �8/�9 measures the metastability of the 9 sub-
basins centered on the states 1,...,9 and core set
B9 = {1, ..., 9};

• �26/�27 measures the metastability of the 27 sub-
sub-basins centered on the states 1,...,27 and core
set B27 = {1, ..., 27};

Panel (A) of figure 5 shows the first 30 eigenvalues ratios
for a range of temperatures from 0.2 to 1.5. The temper-
ature increasing decreases the spectral gaps but not their
locations.

Overdumped Langevin trajectories were generated
with the equation

�ẋ(t) = �rE(x) +

p
2kBT�⌘(t) (11)

with E(x) the 1D potential energy of figure (3), � the
friction coefficient and ⌘(t) the noise such that h⌘(t)i =
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Figure 5: (A) The list of the first 30 eigenvalues ratios as-
sociated to a 200 discrete state Markov chain in a range of
temperatures from 0.2 to 1.5, shows large gaps correspond-
ingly to �1/�2, �2/�3, �8/�9 and �26/�27. (B) The values of
the ⇢B metastability index of the 1D trajectories at different
temperatures for increasing size M of the core set B shows
clear minima for the core sets B2, B3, B9, B27. According to
Bovier the low values of the metastability index ⇢B provide
a good approximation for the large gaps in the eigenvalue
spectra of an associated Markov process.

0 and h⌘(t)⌘(t

0
)i = �(t � t

0
). The equation (11) was

integrated with the method of Euler-Maruyama. Taking
friction � = 1, time step n and lag time ⌧ one has

xn = xn�1 �rE(xn�1)⌧ +

p
2kBT ⌧ ⌘n (12)

with ⌧ = 0.001 and the temperature in units of kBT .
Three trajectories at temperature kBT = 0.5, 0.75, 1.0

were produced in the time range T = [0, 10000] for a
total of Z = 10

7 saved microstates. Figure (4) shows
the trajectories x(t) at all temperatures. A trial set S of
200 milestones was employed for the milestoning of the
trajectories, according to the rule in equation (1) for 1 di-
mensional systems. All the trajectories were mapped into
time sequences of trial milestones Si0 , Si1 , Si2 , ..., SiZS

with ik 2 {1, ..., 200}, and k = 0, 1, 2, ..., ZS and the pair-
wise committor probabilities Pi(⌧j < ⌧i) were calculated.
Figure (5) shows the results of the minimization of ⇢B for
increasing values of the core set size. Both the methods
illustrated in section IV were used for the calculation of
⇢B led to quantitatively the same result. As a priori sug-
gested from spectral analysis shown in panel (A) of fig-
ure 5, the emerging core sets from trajectory analysis are
B2, B3, B9, B27 (see panel (B) of figure 3). The metasta-
bility analysis indicates that a reduced description based
on a MSM can be constructed on a state space chosen
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Figure 4: Overdumped Langevin trajectories of the model
system with potential energy shown in figure(3) at three tem-
peratures (A) 0.5, (B) 0.75 and (C) 1.0. The time sequences
of the metastable core sets B9, B2 and B3 are superimposed
onto the trajectories at temperatures 0.5, 0.75 and 1.0 respec-
tively.

basins centered on the states 1, 2, 3 and core set
B2 = {1, 2, 3};

• �8/�9 measures the metastability of the 9 sub-
basins centered on the states 1,...,9 and core set
B9 = {1, ..., 9};

• �26/�27 measures the metastability of the 27 sub-
sub-basins centered on the states 1,...,27 and core
set B27 = {1, ..., 27};

Panel (A) of figure 5 shows the first 30 eigenvalues ratios
for a range of temperatures from 0.2 to 1.5. The temper-
ature increasing decreases the spectral gaps but not their
locations.

Overdumped Langevin trajectories were generated
with the equation

�ẋ(t) = �rE(x) +

p
2kBT�⌘(t) (11)

with E(x) the 1D potential energy of figure (3), � the
friction coefficient and ⌘(t) the noise such that h⌘(t)i =
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clear minima for the core sets B2, B3, B9, B27. According to
Bovier the low values of the metastability index ⇢B provide
a good approximation for the large gaps in the eigenvalue
spectra of an associated Markov process.
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integrated with the method of Euler-Maruyama. Taking
friction � = 1, time step n and lag time ⌧ one has

xn = xn�1 �rE(xn�1)⌧ +

p
2kBT ⌧ ⌘n (12)

with ⌧ = 0.001 and the temperature in units of kBT .
Three trajectories at temperature kBT = 0.5, 0.75, 1.0

were produced in the time range T = [0, 10000] for a
total of Z = 10

7 saved microstates. Figure (4) shows
the trajectories x(t) at all temperatures. A trial set S of
200 milestones was employed for the milestoning of the
trajectories, according to the rule in equation (1) for 1 di-
mensional systems. All the trajectories were mapped into
time sequences of trial milestones Si0 , Si1 , Si2 , ..., SiZS

with ik 2 {1, ..., 200}, and k = 0, 1, 2, ..., ZS and the pair-
wise committor probabilities Pi(⌧j < ⌧i) were calculated.
Figure (5) shows the results of the minimization of ⇢B for
increasing values of the core set size. Both the methods
illustrated in section IV were used for the calculation of
⇢B led to quantitatively the same result. As a priori sug-
gested from spectral analysis shown in panel (A) of fig-
ure 5, the emerging core sets from trajectory analysis are
B2, B3, B9, B27 (see panel (B) of figure 3). The metasta-
bility analysis indicates that a reduced description based
on a MSM can be constructed on a state space chosen
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Application to  Glycine-Alanine-Glycine (GAG) Tripeptide

Figure 6: A portion of trajectory {�(t), (t)} dihedral angles
that correspond to the central Alanine amino acid (black dots)
of the GAG peptide from a 1.3 µs MD simulation at T = 330
K. In red the time sequence of the core set B4 of metastable
states.

from either one of the core sets B2, B3, B9, B27, with a
level of accuracy given by the ⇢B metastability index. In
particular, the estimated low values of the metastabil-
ity index ⇢B provide an approximation of the eigenvalue
ratios associated to the spectral gaps, namely

⇢Bi ⇠ C

�i�1

�i
(13)

with C a constant. Interestingly, the trajectory at tem-
perature 0.5 (panel (A) in figure 4) is characterized
by only few excursion events and in spite of that the
metastability analysis identified the correct metastable
states. Thus, the lack of statistical events connecting the
two main basins centered in the wells 1, 2 is weakly re-
lated to the evaluation of their metastability. In other
words, relatively few statistical events can in principle
be suffice to identify the core set and thus, guide the
construction of a suitable MSM. The metastability anal-
ysis in terms of core sets provide a guideline on how far
detailed the state space of MSM can be. In case of the
1D trajectories the core set can chosen among B2, B3, B9

for all the temperature as the values of the metastability
index is fairly low. For the trajectory at kBT = 0.5 the
core set B27 can also provide an acceptable approxima-
tion for a MSM as all the sub-sub-basins resulted well
sampled with metastability index lower than 0.5.

VIII. MD SIMULATIONS OF A GAG PEPTIDE

In this section the metastability analysis is performed
on a MD trajectory of a solvated Glycine-Alanine-
Glycine peptide (GAG). The GAG peptide was modeled
using the CHARMM 27 force field and simulated in a box
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Figure 7: The minimization of the metastability index ⇢B
resulted in two core sets of size 2 and 4, B2 and B4 respectively
(see figure 8 for their locations). A Monte Carlo scheme was
utilized to perform the minimization.

of 475 TIP3P water molecules using the program NAMD
version 2.834. After minimization the system was equili-
brated for 10 ns with the peptide held constrained. The
equilibration was followed by a 1.3 µs production run
with Langevin dynamics at 330 K, using a friction con-
stant of 5 ps. The bonds between hydrogens and heavy
atoms were kept rigid to allow integration at 2 fs. Frames
were saved every 0.5 ps. A total of ZS = 2.6 · 10

6 trajec-
tory snapshots were collected. The configurational space
of the three-residue peptide is very well described by the
pair of dihedral angles {�, } that corresponds to the
central residue Alanine. Figure 6 shows a portion of the
long {�(t), (t)} time series.

To construct an initial set S of trial milestones from
the simulation data the space spanned by the {�(t), (t)}
trajectory is discretized into a lattice of size ⇣ = 8 deg
(see section II). The resulting grid points are the cen-
ters C = [N

i=1Ci from which the trial milestones Si are
constructed as circles of radius r < 4 deg. The to-
tal number of milestones composing the trial set S =

[N
i=1Si resulted to be N = 1303. From the time se-

quence Si0 , Si1 , Si2 , ..., SiZS
with ik 2 {1, ..., 1303}, and

k = 0, 1, 2, ..., ZS the pairwise committor probabilities
Pi(⌧j < ⌧i) were calculated. In figure 8 it is shows the
free energy landscape contour plot of the central Ala-
nine amino acid GAG peptide projected on the {�, }
plane. The set of trial milestones S are represented as
white circles in figure 8. The landscape is divided in four
macro-regions with a higher propensity for negative val-
ues of the � angles. The left quadrant of the Alanine
Ramachandran plot is divided in two main basins: in the
upper left there is the vast region where the C5 and the
polyproline left-handed helix PII sub-basins are recogniz-
able (see for comparison the NMR studies on the Alanine
conformational preferences35–37); in the lower left quad-
rant the wide right-handed helical region is designated
as ↵R. The right quadrant of the Ramachandran plot
contains the two other less stable conformational basins
typical of a solvated Alanine, corresponding to the left-
handed helices ↵L and the conformation ↵D (see the Ra-
machandran map in35).

The results of the minimization of the metastability
index ⇢B are shown in figure 7, in particular two core
sets were found as clearly metastable, B2 and B4 with
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Figure 8: The free energy landscape contour plot of the GAG
peptide in the {�, } space as resulted from the MD simula-
tion at T = 330 K. The trial set of milestones are represented
as white dots and circles. The core sets B2, B3, B4 and B5

are represented as green circles, yellow stars, red dots and
red diamonds respectively. The panel shows also the struc-
tures that correspond to the centers of the core set milestones,
PII ,↵R,↵L,↵D respectively. The C5 and ↵

0
R sub-basins are

also indicated as a members of the B5 and B3 core sets re-
spectively.

values of metastability index ⇢B = 0.29 and 0.45 respec-
tively. A finer grained definition of the trial set S of
milestones (⇣ = 5 deg and N = 3166 milestones) does
not significantly change the results of the metastability
analysis, B2 and B4 remain the most metastable core
sets with a ⇢B slightly larger. We have B2 = {↵R,↵L}
and B4 = {PII ,↵R,↵L,↵D}, which indicates that the
transitions between the regions ↵R and ↵L are char-
acterized by the longest time scale and capture most
of the system metastability. The locations of the core
sets are represented in the Ramachandran plot shown
in figure 8. The values of the {�, } angles relative
to the milestones composing the core sets B2 and B4

have centers ↵R ⇡ {�64,�40}, PII ⇡ {�64, 152}, ↵L ⇡
{64, 48} and ↵D = {56,�160}. Interestingly, the core
set B5 correctly splits the upper left quadrant of the
Ramachandran plot basin into two representative mile-
stones C5 ⇡ {�152, 160} and PII ⇡ {�64, 152} so that
B5 = {C5, PII ,↵R,↵L,↵D}. However, in this case the
metastability index of B5 is ⇢B ⇠ 1, suggesting that this
core set is not suitable for a reduced MSM. The calcu-
lation the first passage time distribution along the 4490
reactive paths connecting the milestones C5 and PII from
the time sequence of trial milestones Si0 , Si1 , Si2 , ..., SiZS

,
revealed these transitions as strongly non exponential at
short time scales and thus, non Markovian (panel (A)
of figure 9). This is consistent with the experimental
results about the noncooperativity of the Alanine PII

(A) (B)

(C) (D)

(E) (F)

Figure 9: Cumulative FPT distributions calculated from the
time sequence of trial milestones along the reactive paths con-
necting: C5 $ PII (A), ↵R $ PII (B), ↵R $ ↵L (C),
PII $ ↵D (D), ↵R $ ↵D (E) and PII $ ↵L. All the distri-
butions are approximatively exponential at short time scale
with the exception of the C5 $ PII (A). The dashed lines
represents the best fit exponentials with MFPT as parame-
ters.

conformation in GGAGG peptides due to highly local
hydration effects38. Conversely, the FPT distributions
along reactive paths for the transitions ↵R $ PII (B),
↵R $ ↵L (C), PII $ ↵D (D), ↵R $ ↵D (E) and
PII $ ↵L were found approximatively exponential, sup-
porting the hypothesis that these milestones can be used
in a reduced MSM. The core set B3 is composed by
the milestones corresponding to the states {PII ,↵

0

R,↵L}
where ↵

0

R is found in a slightly more central position of
the right-handed helices ↵

0

R = {�104, 0} in comparison
with ↵R. B3 is significantly less metastable than B2 and
B4 (⇢B ⇠ 0.8) despite the FPT distributions between
the milestones ↵

0

R $ PII are well approximated with
exponentials. Thus, the metastability indicated by the
low values of the index ⇢B implies the Markovianity of
the original process when described with the core set B,
namely that the metastability is a sufficient condition for
Markovianity, inasmuch as the non-Markovianity implies
the lack of metastability (reference).

Let us analyze the statistical properties of the core
sets B2 = {↵R,↵L} and B4 = {PII ,↵R,↵L,↵D}. From
the time sequences of the core set milestones two MSM

Figure 6: A portion of trajectory {�(t), (t)} dihedral angles
that correspond to the central Alanine amino acid (black dots)
of the GAG peptide from a 1.3 µs MD simulation at T = 330
K. In red the time sequence of the core set B4 of metastable
states.

from either one of the core sets B2, B3, B9, B27, with a
level of accuracy given by the ⇢B metastability index. In
particular, the estimated low values of the metastabil-
ity index ⇢B provide an approximation of the eigenvalue
ratios associated to the spectral gaps, namely

⇢Bi ⇠ C

�i�1

�i
(13)

with C a constant. Interestingly, the trajectory at tem-
perature 0.5 (panel (A) in figure 4) is characterized
by only few excursion events and in spite of that the
metastability analysis identified the correct metastable
states. Thus, the lack of statistical events connecting the
two main basins centered in the wells 1, 2 is weakly re-
lated to the evaluation of their metastability. In other
words, relatively few statistical events can in principle
be suffice to identify the core set and thus, guide the
construction of a suitable MSM. The metastability anal-
ysis in terms of core sets provide a guideline on how far
detailed the state space of MSM can be. In case of the
1D trajectories the core set can chosen among B2, B3, B9

for all the temperature as the values of the metastability
index is fairly low. For the trajectory at kBT = 0.5 the
core set B27 can also provide an acceptable approxima-
tion for a MSM as all the sub-sub-basins resulted well
sampled with metastability index lower than 0.5.

VIII. MD SIMULATIONS OF A GAG PEPTIDE

In this section the metastability analysis is performed
on a MD trajectory of a solvated Glycine-Alanine-
Glycine peptide (GAG). The GAG peptide was modeled
using the CHARMM 27 force field and simulated in a box
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Figure 7: The minimization of the metastability index ⇢B
resulted in two core sets of size 2 and 4, B2 and B4 respectively
(see figure 8 for their locations). A Monte Carlo scheme was
utilized to perform the minimization.

of 475 TIP3P water molecules using the program NAMD
version 2.834. After minimization the system was equili-
brated for 10 ns with the peptide held constrained. The
equilibration was followed by a 1.3 µs production run
with Langevin dynamics at 330 K, using a friction con-
stant of 5 ps. The bonds between hydrogens and heavy
atoms were kept rigid to allow integration at 2 fs. Frames
were saved every 0.5 ps. A total of ZS = 2.6 · 10

6 trajec-
tory snapshots were collected. The configurational space
of the three-residue peptide is very well described by the
pair of dihedral angles {�, } that corresponds to the
central residue Alanine. Figure 6 shows a portion of the
long {�(t), (t)} time series.

To construct an initial set S of trial milestones from
the simulation data the space spanned by the {�(t), (t)}
trajectory is discretized into a lattice of size ⇣ = 8 deg
(see section II). The resulting grid points are the cen-
ters C = [N

i=1Ci from which the trial milestones Si are
constructed as circles of radius r < 4 deg. The to-
tal number of milestones composing the trial set S =

[N
i=1Si resulted to be N = 1303. From the time se-

quence Si0 , Si1 , Si2 , ..., SiZS
with ik 2 {1, ..., 1303}, and

k = 0, 1, 2, ..., ZS the pairwise committor probabilities
Pi(⌧j < ⌧i) were calculated. In figure 8 it is shows the
free energy landscape contour plot of the central Ala-
nine amino acid GAG peptide projected on the {�, }
plane. The set of trial milestones S are represented as
white circles in figure 8. The landscape is divided in four
macro-regions with a higher propensity for negative val-
ues of the � angles. The left quadrant of the Alanine
Ramachandran plot is divided in two main basins: in the
upper left there is the vast region where the C5 and the
polyproline left-handed helix PII sub-basins are recogniz-
able (see for comparison the NMR studies on the Alanine
conformational preferences35–37); in the lower left quad-
rant the wide right-handed helical region is designated
as ↵R. The right quadrant of the Ramachandran plot
contains the two other less stable conformational basins
typical of a solvated Alanine, corresponding to the left-
handed helices ↵L and the conformation ↵D (see the Ra-
machandran map in35).

The results of the minimization of the metastability
index ⇢B are shown in figure 7, in particular two core
sets were found as clearly metastable, B2 and B4 with
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tion at T = 330 K. The trial set of milestones are represented
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red diamonds respectively. The panel shows also the struc-
tures that correspond to the centers of the core set milestones,
PII ,↵R,↵L,↵D respectively. The C5 and ↵
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also indicated as a members of the B5 and B3 core sets re-
spectively.

values of metastability index ⇢B = 0.29 and 0.45 respec-
tively. A finer grained definition of the trial set S of
milestones (⇣ = 5 deg and N = 3166 milestones) does
not significantly change the results of the metastability
analysis, B2 and B4 remain the most metastable core
sets with a ⇢B slightly larger. We have B2 = {↵R,↵L}
and B4 = {PII ,↵R,↵L,↵D}, which indicates that the
transitions between the regions ↵R and ↵L are char-
acterized by the longest time scale and capture most
of the system metastability. The locations of the core
sets are represented in the Ramachandran plot shown
in figure 8. The values of the {�, } angles relative
to the milestones composing the core sets B2 and B4

have centers ↵R ⇡ {�64,�40}, PII ⇡ {�64, 152}, ↵L ⇡
{64, 48} and ↵D = {56,�160}. Interestingly, the core
set B5 correctly splits the upper left quadrant of the
Ramachandran plot basin into two representative mile-
stones C5 ⇡ {�152, 160} and PII ⇡ {�64, 152} so that
B5 = {C5, PII ,↵R,↵L,↵D}. However, in this case the
metastability index of B5 is ⇢B ⇠ 1, suggesting that this
core set is not suitable for a reduced MSM. The calcu-
lation the first passage time distribution along the 4490
reactive paths connecting the milestones C5 and PII from
the time sequence of trial milestones Si0 , Si1 , Si2 , ..., SiZS

,
revealed these transitions as strongly non exponential at
short time scales and thus, non Markovian (panel (A)
of figure 9). This is consistent with the experimental
results about the noncooperativity of the Alanine PII
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Figure 9: Cumulative FPT distributions calculated from the
time sequence of trial milestones along the reactive paths con-
necting: C5 $ PII (A), ↵R $ PII (B), ↵R $ ↵L (C),
PII $ ↵D (D), ↵R $ ↵D (E) and PII $ ↵L. All the distri-
butions are approximatively exponential at short time scale
with the exception of the C5 $ PII (A). The dashed lines
represents the best fit exponentials with MFPT as parame-
ters.

conformation in GGAGG peptides due to highly local
hydration effects38. Conversely, the FPT distributions
along reactive paths for the transitions ↵R $ PII (B),
↵R $ ↵L (C), PII $ ↵D (D), ↵R $ ↵D (E) and
PII $ ↵L were found approximatively exponential, sup-
porting the hypothesis that these milestones can be used
in a reduced MSM. The core set B3 is composed by
the milestones corresponding to the states {PII ,↵

0

R,↵L}
where ↵

0

R is found in a slightly more central position of
the right-handed helices ↵

0

R = {�104, 0} in comparison
with ↵R. B3 is significantly less metastable than B2 and
B4 (⇢B ⇠ 0.8) despite the FPT distributions between
the milestones ↵

0

R $ PII are well approximated with
exponentials. Thus, the metastability indicated by the
low values of the index ⇢B implies the Markovianity of
the original process when described with the core set B,
namely that the metastability is a sufficient condition for
Markovianity, inasmuch as the non-Markovianity implies
the lack of metastability (reference).

Let us analyze the statistical properties of the core
sets B2 = {↵R,↵L} and B4 = {PII ,↵R,↵L,↵D}. From
the time sequences of the core set milestones two MSM
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Not limited to MD data - Lorenz 63 example

Chaotic systems and metastability

Enrico Guarnera

I. METASTABILITY ANALYSIS ON L63

The non-linear dynamical system known as Lorenz attractor (1963) L63 is here analyzed in the

context of metastability. The corresponding 3-dimensional system of differential equations repre-

sents a classical example of deterministic chaos. The equations governing the Lorenz oscillations

are
8
>>><

>>>:

ẋ = ��(x� y)

ẏ = x(⇢� z)� y

ż = xy � �z

(1)

where the parameters are � = 10, ⇢ = 28 and � = 8/3. The equations in 1 were integrated with the

Runge-Kutta method (ode45 in MATLAB) with the initial condition x(0) = 2.0049, y(0) = 3.4064,

z(0) = 14.1290, time step �t = 0.01 and time range (0, 10000). All the 10

6 snapshots of the

produced trajectory were saved for the subsequent analysis.

In figure 1 it is shown the projected trajectory onto the (x, y) plane. The metastability analysis

of the L63 system is focused on the x variable. The space spanned by the x(t) trajectory is gridded

such that N = 100 milestones are defined as initial state space. We want to find a two state core

Figure 1 Projection onto the (x, y) coordinates of the L63 trajectory on the time range (0, 10000).
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Figure 2 Left panel: results from direct estimation of MFPT and MRT on time series; Upper left: in black the

time series x(t) of L63, in red the time series of the milestones corresponding to the core set M . Center left:

filled circles representing the initial state space of milestones; on y-axis the pseudo free energy � log ⇡i with

⇡i the probability of a milestone i; in red the milestones of the best core set M = 25, 76 with ⇢M = 0.48 as

resulted from the biased MC; the rest of the milestones are colored according to which of the two states of M

they relax faster. Bottom left: in black the weighted committor probability Pi(⌧M < ⌧i) ' hPi(⌧↵ < ⌧i)i↵2M

and in red the MFPT to the core set tM (i) ' min↵2M t↵(i). Right panel: results from maximal likelihood

estimation of the L generator. The caption for this panel does not differ from the one referred to the left,

except that the core set resulted from the biased MC is M = {20, 80} with ⇢M = 0.085.

core set is understood by looking at the time series, focusing for instance on the oscillations around

the milestone ↵ = 25: all the trajectories with i < 25 can only pass through ↵ = 25 without

having been re-injected; for the other trajectories with i > 25 the system can have visited the other

region around � = 76 before being re-injected. The plots of the weighted committor probabilities

Pi(⌧↵ < ⌧i) from each milestone to the members of the core set are smoother, the wide minima

clearly corresponds to the regions of the core set. In figure 4 it is shown the first passage time FPT
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Figure 3 Left panel: the committor function q↵�(i) such that M = {↵,�} calculated from 4; Center panel:

the MFPT from any milestone to the members of the core set M = {25, 76}; Right panel: the weighted

committor probabilities Pi(⌧↵ < ⌧i) from any milestone to the members of the core set M = {25, 76}.
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Figure 4 The distributions of the FPT between the two states of the core set M compare well with an

exponential, an indication of a good Markov approximation.

distributions for the interconversion of the two states in the core set M . On a semilog scale the

distributions compare well with an exponential decay, suggesting that the reduction of system onto

a two state Markov chain is accurate enough.

II. METASTABILITY ON CDV79

In the following section we analyze the metastability of a more complex dynamical system known

as the Charney-DeVore (1979) model CDV79. The CDV model is an example of simple atmosphere
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 Charney-DeVore 79 - 6D example

5

model. The model is on 6 dimensions with equation of motion
8
>>>>>>>>>>>><

>>>>>>>>>>>>:

ẋ1 = �

⇤
1x3 � C(x1 � x

⇤
1)

ẋ2 = �(↵1x1 � �1)x3 � Cx2 � �1x4x6

ẋ3 = (↵1x1 � �1)x2 � �1x1 � Cx3 + �1x4x5

ẋ4 = �

⇤
2x6 � C(x4 � x

⇤
4) + "(x2x6 � x3x5

ẋ5 = �(↵2x1 � �2)x6 � Cx5 � �2x4x3

ẋ6 = (↵2x1 � �2)x5 � �2x4 � Cx6 + �2x4x2

(5)

The model coefficients are given by

↵m =

8
p
2

⇡
m2

4m2�1
b2+m2�1
b2+m2 �m =

�b2

b2+m2

�m =

64
p
2

15⇡
b2�m2+1
b2+m2 �

⇤
m = �

4m
4m2�1

p
2b
⇡

" =

16
p
2

5⇡ �m = �

4m3

4m2�1

p
2b

⇡(b2+m2)

(6)

A time step �t = 1 is interpreted as 1 day. The coefficients in 6 depend on a set of parameters

(x

⇤
1, x

4
4, C,�, �, b) = (0.95,−0.76095, 0.1, 1.25, 0.2, 0.5). The set of parameters were taken from

Crommelin and Majda (2004). The equations in 5 were integrated with the Runge-Kutta method

with initial condition x1(0) = x

⇤
1, x4(0) = �0.7 and xi(0) = 0 otherwise. A integration step of

�t = 0.1 was used on a time range (0, 200000) so that 2 · 106of snapshots were saved for the

analysis. In figure 5 it is shown the resulting trajectory projected onto the (x1, x4) plane.

Figure 5 Projection onto the (x1, x4) coordinates of the CDV79 trajectory.

8

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
1

x
4

 Grid Size=0.05   ρ
M

=0.298

 

 

−
lo

g
(P

D
F

)

1

2

3

4

5

6

7

8

9

10

11

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

x
1

x
4

 Grid Size=0.05   ρ
M

=0.395

 

 

−
lo

g
(P

D
F

)

1

2

3

4

5

6

7

8

9

10

11

Figure 8 Superimposition of the pseudo energy profiles with the obtained core sets M = {6, 147} ⇢M = 0.29

and M = {14, 49, 147} ⇢M = 0.39 for the size of M 2 and 3 respectively.
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Figure 9 Left panel: map of the committor probability q↵,�(i) with ↵ = 6 and � = 147 referred to the core

set of size 2. Right panel: MFPT map from any milestone to the core set.

M = {14, 49, 147} ⇢M = 0.39 for the size of M 2 and 3 respectively. The case with M of size 2 is

metastable, not only ⇢M is low but also the supi tM (i) < inf↵2M tM/↵(↵), 265 and 286 respectively.

In figure 9 are shown the maps of the committor between the states of the core set of size 2 and

the MFPT from any milestone to the core set. Figure 10 shows the FPT distributions between the

states in the core set of size 2. The slower transition is approximatively exponential as we already

noted in the 1D example. Finally, figure 11 shows the the time series of the two analyzed variable

superimposed with the time series in the core set. Most of the jumps are captured in the core set

series but there is a problem, some are not. The issue is related to the initial paving and definition

of the milestones. The point is that the missed jumps in the core set series are also missed along

the initial time series of milestones, they were simply not encountered. This is a bug of the grid
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Figure 10 FPT distribution for the transitions between the milestones in the core set M = {6, 147}. The

the transition 147 ! 6 is approximatively exponential, consistently with that found in the 1D example.

Figure 11 Time series of the x1and x4variable superimposed with the time series of the core set corresponding

to M = {6, 147}.

method on a non diffusive system.

9

0 500 1000 1500 2000 2500 3000
10

−3

10
−2

10
−1

10
0

Time

F
P

T
 p

ro
b

a
b

il
it

y

 

 

147 −> 6

6 −> 147

Figure 10 FPT distribution for the transitions between the milestones in the core set M = {6, 147}. The

the transition 147 ! 6 is approximatively exponential, consistently with that found in the 1D example.

Figure 11 Time series of the x1and x4variable superimposed with the time series of the core set corresponding

to M = {6, 147}.

method on a non diffusive system.
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Figure 8 Superimposition of the pseudo energy profiles with the obtained core sets M = {6, 147} ⇢M = 0.29

and M = {14, 49, 147} ⇢M = 0.39 for the size of M 2 and 3 respectively.
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Figure 9 Left panel: map of the committor probability q↵,�(i) with ↵ = 6 and � = 147 referred to the core

set of size 2. Right panel: MFPT map from any milestone to the core set.

M = {14, 49, 147} ⇢M = 0.39 for the size of M 2 and 3 respectively. The case with M of size 2 is

metastable, not only ⇢M is low but also the supi tM (i) < inf↵2M tM/↵(↵), 265 and 286 respectively.

In figure 9 are shown the maps of the committor between the states of the core set of size 2 and

the MFPT from any milestone to the core set. Figure 10 shows the FPT distributions between the

states in the core set of size 2. The slower transition is approximatively exponential as we already

noted in the 1D example. Finally, figure 11 shows the the time series of the two analyzed variable

superimposed with the time series in the core set. Most of the jumps are captured in the core set

series but there is a problem, some are not. The issue is related to the initial paving and definition

of the milestones. The point is that the missed jumps in the core set series are also missed along

the initial time series of milestones, they were simply not encountered. This is a bug of the grid
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Summarizing:

Reactive events can be understood from a probabilistic (i.e. statistical mechanistic) 
viewpoint. In the context of reactive events, this means focusing on the statistical 
mechanics description of the reactive trajectories;

Concepts for probability theory permit to define precisely the concept of reaction 
coordinate to describe the transition from a reactant state A to a product state B in 
terms of the committor function;

Open the door to accelerated computing strategies (i.e. with biased/artificial 
dynamics) to analyze rare reactive events like e.g. the string method.

Permits to systematize MSM building
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