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The evolution of many dynamical systems can be viewed as a navigation on an
energy or free energy landscape.

The system tends to spend long period of time in the regions of low energy, and
it only rarely makes transition from one such region to another (metastability).

These transitions often are the most interesting part of the dynamics:

® kinetic phase transitions;

® conformation changes in macro-molecules;
® chemical reactions;

® regime changes in climate;

® etC.

Understanding the long time dynamics of these systems is a challenge, both from
theoretical and computational viewpoints.
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Origin of metastability
= dynamical bottlenecks of energetic and/or entropic origin which confine the
system in localized regions in phase-space ( = metastable states)

Simple example:  dx(t) = —VV(x(t))dt + /26-LdW (t)
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Examples of this type fit the framework of large deviation (LD) theory.
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Large deviation theory: (Wentzell-Freidlin)

dz(t) = —VV (z(t))dt + /28~ dW (¢

Assume that V(x) is a Morse function with growth condition at infinity.

Then dynamics is ergodic w.r.t. the invariant measure

dp(z) = C~ " exp(—pBV (z))dx

When 3 —co this measure becomes atomic on the minima of V(x)

Dynamics can be reduced to a continuous-time Markov chain (random walk on a
network) by mapping the trajectory x onto the index of a small ball around the last
local minimum it visited

- rate of transitions are related to energy barriers and exponentially small in 3;
- pathways of transitions are predictable and follow minimum energy paths solution of

0=[VV(")]~
Can be generalized to nonequilibrium systems.

One issue becomes computational: how to calculate the relevant object of LD theory
in complicated systems (e.g. stochastic PDEs) - more on this below.
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Another issue is that LDT is not directly applicable to more complicated examples
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Example: solvated alanine dipetide:

|
O

|2 point particles ( = atoms ) + 252 water molecules (i.e.a dynamical system

with about |e3 degrees of freedom).

time series (in ns) of

dihedral angle psi
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Calculations by Luca Maragliano.
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Energy landscape is typically rugged, i.e.
There are many features of the potential on small scales (e.g. many critical points)
which are mostly irrelevant for the rare events.What matters are large scale

features (& LD theory does not apply directly).

Example: Rugged Mueller potential

dr(t) = =VV (x(t),e)dt + /281 dW (t) Viz,e) = Vo(x) + eVi(x/€)

More difficult if € = 51
small but finite.

and ...
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Entropic (i.e. volume) effects matter, presence of dead-ends, dynamical traps, etc.

Example: a maze
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Hard to understand by simple inspection even if the trajectory is given.
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More general definition of metastability based on spectral theory:

(Dellnitz, Schuette et al., Bovier et al., Kurchan, ...)

Metastability = presence of one or more groups of small eigenvalues of the generator of the
dynamical process.

These small eigenvalues correspond to processes arising on long timescales.

Global viewpoint on metastability that can

be hard to make practical because longest

time scales may not be the most relevant

ones (e.g. due to presence of deadends or \
dynamical traps), there may be many of

them (subgroups into groups), etc.

How can one single out and analyze a specific reaction?
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Transition Path Theory (E,V-E.)

Key concept: reactive trajectories, i.e. those trajectories by which the reaction occurs.

Conceptually, these reactive trajectories can be obtained by pruning a long ergodic
trajectory which oscillates between A and B.

Understanding the mechanism of the reaction
= characterizing the statistical mechanics properties of the reactive trajectories
(i.e. the red pieces in the figure)

Note that A and B are arbitrary and there is no small parameter needed at this point!
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Discrete set-up:  p;i= probability that x(t+1) = j given that x(t) = i

Detailed balance:  ; pij= 7 pji (71; = equilibrium distribution)

Two key questions:

What is the equilibrium probability 7t:% to find the trajectory at state
[ and that it be reactive?

it = migi(1 — qi)

What is the probability current of reactive trajectories from state i to
state j?

o =max{fij = f;i,0} where  fi; = (1 - q)mipija;

where @i is the committor function (aka pfold) which gives the probability that the
trajectory starting from i will reach next the product rather than the reactant.
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The maze example:

Effective current Committor
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The committor function is the reaction coordinate because it permits (along with
the equilibrium probability) to express all the statistical properties of the reactive
trajectories and compute the reaction rate.

The probability current, in particular, links concepts of reaction coordinate to that of
transition pathway.

Can be generalized to diffusions: dr(t) = —=VV (x(t))dt + +/28-1dW (t)

Probability density of reactive trajectories:

pr(r) = lim l/O 6( — z(t)1r(t)dt = C~le VP g(x)(1 - g(x))

T'— o0

Probability current of reactive trajectories:

1 T
(@) = Jim /O 5(x — ()1 p(t) #(t)dt = C~te PV @ Vq(a)
:oda:(t)
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Probability current and flux

in rugged Mueller potential

Tuesday, June 12, 12



Permit to erase deadends, account for entropic switches ...
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The main issue becomes the computation and analysis of the committor function g(x).

For complex systems it can be done by direct manipulations on the equation for
q(x) under specific assumption (e.g. small temperature, localized tubes
concentrating the flux of reactive trajectories, etc.)

This approach is the one taken in the string method (E, Ren,V.-E.) based on:

Variational formulation: The committor function is the minimizer of:

/ eV @) |V g() 2.
Q)

among all g(x) such that g(x) = 0in A and g(x) = I in B.
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Lower bound argument to find the flowline of max-flux:
in collaboration with Masha Cameron.

Given a curve vy connecting A and B, let By = {z : d(x,v) < §}.

—BV (x) 2 — BV (x) 2
/Qe IVg(z)|“dx > /B5e Vq(x)|“dx

> [ e V@ vg(a)[Pda
Bs

Optimizing the bound:

i —BV (x) 2 i —BV(z) ./ . 2
Ir(}f/Qe Vq(x)|“dx > Syyplr(}f/B5e v - Vg(x)|“dz
1
ST sup ( [ eﬁvwds) - <mf [ eﬂwwdS)
¥ ¥ TSy

Finding the flowline of max-flux reduces to the problem of computing a geodesic.

—1

(NB: line of max-flux is the MEP from LD theory in small noise limit)
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NB: maxflux more global object than MEP (and can be generalized to work with
collective variables, account for the finite width of the transition tube, etc.)
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String method in a nutshell:

Parametrize the curve e.g. by normalized arc-length;
Evolve it using a time-splitting method:

- one step of steepest descent along gradient of objective function (or CG,
BFGS, etc.);

- one step of interpolation-reparametrization to control the parametrization of
the curve
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String method in a nutshell:
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Application: Understanding superparamagnetic limit in sub-micron
sized ferromagnetic elements

in collaboration with Weinan E (Princeton) and Weiqing Ren (NUS)

Main building blocks in Magnetoelectronics (used e.g. as storage devices,
etc.)

As elements gets smaller, one reaches the superparamagnetic limit, where
thermal effects become important and limit data retention time by

magnetization reversal.

Mechanism of reversal are complex due to nonuniformity in space.
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Landau-Lifshitz energy: m:Q — 52 div(=Vu +m) =0

Blm) = 3 [ (9P +@ [ olm)+5 [ [VuP = [ b

Dynamics: steepest descent + gyromagnetic rotation at Iml=1

a—m :mxheff—ozmx (theff)
ot
OF
herr = —% + V2en(z,t)

Non-gradient (i.e. nonequilibrium transitions) but solvable.
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Two metastable states (among others)
= local minimum of LL energy

In plane component of magnetization
blue = right, red = left,
= up, green = down

Permalloy thin film
(200nm x 200nm x 10nm)
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Sequence of minimum and saddle points identified by string method:

AR ux_T1E

0.026}

Energy:

0.025f
0.024 1

0.023f

E[m]

0.0221

0.021

Permalloy thin film
(200nm x 200nm x 10nm)

0.021

0.019 ' ' ' '
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Two paths (MEPs) identified by string method:
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Graph of Markov chain:
= energy landscape + orbits in projected space
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Apbplication: hydrophobic collapse of a polymeric chain

in collaboration with Tommy Miller (Caltech) and David Chandler (UC Berkekeley)

Chain made of 12 monomers of size 7.2 A solvated in a periodic box of size 99.5 A x
99.5 A x 116.1 A containing 34,000 rigid water molecules modeled by SPC/E.

Collective variables = monomer positions + local density field
- in total over 129,000 collective variables

o |—[ial |—[ 1N

Tuesday, June 12, 12



MFEP identified by the string method
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Free energy
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Dominated by work done by the solvent degrees of freedom.
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Dynamical trajectories initiated from the transition state region
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TPT can be generalized to non-gradient systems (i.e. activated processes arising out-
of-equilibrium)

In the low noise limit TPT reduces to LDT (LDT).

Reactions arise by the Maximum Likelihood Path (MLP) which minimizes the
LDT action.

MLP can be calculated by the Minimum Action Method.

W.E,W.Ren & E.V-E., Comm. Pure App. Math 52, 637-656 (2004);
M. Heymann & E.V.-E., Comm. Pure App. Math 61, 1052-1117 (2008)

Simple illustrative example due to Maier and Stein:
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More sophisticated example: phase-transition in the presence of a shear flow

M. Heymann & E.V.-E. Phys. Rev. Lett. 100, 140601 (2008)

U= rAu+u —u’ +csin(y)Opu + 1 E(u) = / (Ls|Vul? + (1 — u?)?) da
Q

~DE(u)

e
—
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How to use TPT to build Markov State Models (MSM) to analyze

time-series data?
with Enrico Guarnera and Jianfeng Lu

What can we do with the massive amounts of data generated e.g. by massively
parallel simulation, special-purpose high-performance computers, and high-
performance GPUs, etc. that are too complicated to be grasped by traditional
“look and see” analyses!?

Examples from molecular dynamics (Pande’s folding@home) or from atmosphere/
ocean sciences (data from observation or from GCM), etc.

Popular approach (Swope, Chodera & Pande, Noe & Schuette):

Reduce the dynamics of a large dimensional system to that of a continuous-time
Markov chain on a discrete state space, with states that have physical meaning -
Markov State Modeling

Can be done for metastable systems but require to properly identify the metastable
states.
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Consider a discrete MC with state space S that we want to coarsen onto M C S;

Introduce the following measure of metastability of the states in M (cf Bovier):

max e P(j more likely to first go to M \ {j} rather than return to j)

PM = min;g s P(¢ more likely to first go to M rather than return to %)

P measures size of the gap between group of eigenvalues of the chain, and
measures the quadlity of the milestoning approximation.

Thm (Bovier): If pm is small then

P~ M- /A 0= <A <A <o < Ao K Ay <

N AP < Cpar, i< M

Can be used to select best M via minimization of P .
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MSM via milestoning Elber et al. (2004,2007, etc.), Venturoli and V.-E. (2008, 201 1)

Introduce a set of target sets (the milestones) in the state-space of the system
and assign the trajectory x(?) to the index of the last milestone it hit.

x(t) — i(t) = index of last milestones hit by x(1)

i(t) 1

Assumption: The evolution of i(t) can be described by a continuous-time Markov chain.
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How to justify the assumption that the evolution of i(¢) can be described by a
continuous-time Markov chain?

Pick a subset of real milestones among a trial set such that they have a low
metastability index.

Trial set
milestones

Core set
milestones

- Fast
Relaxations

Slow
Relaxations
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Link with TPT?

Trial set
milestones

TPT gives exact expressions for the
rates of transition between the core
milestones.

Core set
milestones

Fast
Relaxations

Slow
Relaxations

These are also the limit of the
maximum likelihood estimator values
for these rates when the amount of
data becomes infinite

Makes a link between Bovier’s potential theoretic approach to metastability, inference
methods (maximum likelihood, Bayesian estimation) used in conjunction with
milestoning, and TPT.

Can also be related to a specific Galerkin truncation by projection on the space spanned
by a few committor functions (work with Lu, Noe, Sarich & Schuette).
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Application to Glycine-Alanine-Glycine (GAG) Tripeptide
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Figure 6: A portion of trajectory {¢(t),v(t)} dihedral angles
that correspond to the central Alanine amino acid (black dots)
of the GAG peptide from a 1.3 us MD simulation at T = 330
K. In red the time sequence of the core set B4 of metastable
states.
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iC origin

Note that the metastability can be of entrop
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Not limited to MD data - Lorenz 63 example

30

L63
Core Set Time series

X coordinate

-5
-10 L
15} J
| | | | | | | | 100
3400 3410 3420 3430 3440 3450 3460 3470
Time
7 T T T
—e— —log(PDF) p 107
69 ® Core set M:p, ,=0.48 =
E
©
7 Ne]
o
o
N =
o
LL 2
= 10°|
-3 L L L L L L L L
0 10 20 30 40 50 60 70 80 90 100 107 2 3 . 5 e ; s s
Milestones Time

Tuesday, June 12, 12



Core Set Time series
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Summarizing:

Reactive events can be understood from a probabilistic (i.e. statistical mechanistic)
viewpoint. In the context of reactive events, this means focusing on the statistical
mechanics description of the reactive trajectories;

Concepts for probability theory permit to define precisely the concept of reaction
coordinate to describe the transition from a reactant state A to a product state B in
terms of the committor function;

Open the door to accelerated computing strategies (i.e. with biased/artificial
dynamics) to analyze rare reactive events like e.g. the string method.

Permits to systematize MSM building
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