Non-classical large deviations in the AB model

Hugo Touchette

School of Mathematical Sciences Queen Mary, University of London

Workshop on Computation of Transition Trajectories and Rare Events in Non-Equilibrium Systems

ENS Lyon, France

13 June 2012

Outline

Study

- Low-noise large deviations for stationary distribution
- Fluctuation paths instantons
- Nonequilibrium case
- Non-isolated attractor

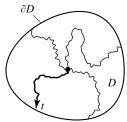
Plan

- Recap on Freidlin-Wentzell theory
- AB model results
- Conclusion

Freddy Bouchet (ENS Lyon), HT

Non-classical large deviations for a noisy system with non-isolated attractors, J. Stat. Mech. P05028, 2012

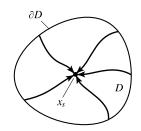
Noise-perturbed dynamical systems



Noisy system:

$$\dot{x}(t) = f(x(t)) + \sqrt{\nu} \, \xi(t)$$

ullet Gaussian white noise: $\xi(t)$



Zero-noise system:

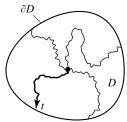
$$\dot{x}(t) = f(x(t))$$

- Fixed points: $f(x^*) = 0$
- Attractor: x_s

Interesting probabilities

- Propagator: $P(x, t|x_s, 0) \sim e^{-V(x,t)/\nu}$
- Stationary distribution: $P(x) \sim e^{-V(x)/\nu}$

Noise-perturbed dynamical systems



Noisy system:

$$\dot{x}(t) = f(x(t)) + \sqrt{\nu} \, \xi(t)$$

• Gaussian white noise: $\xi(t)$



Zero-noise system:

$$\dot{x}(t) = f(x(t))$$

- Fixed points: $f(x^*) = 0$
- Attractor: x_s

Interesting probabilities

- Propagator: $P(x, t|x_s, 0) \sim e^{-V(x,t)/\nu}$
- Stationary distribution: $P(x) \sim e^{-V(x)/\nu}$

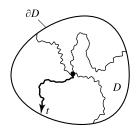
Stationary distribution

• Path integral:

$$P(x,t|x_s,0) = \int_{x_s,0}^{x,t} \mathcal{D}[x] P[x]$$

Path probability:

$$P[x] \sim e^{-I[x]/\nu}, \qquad I[x] = \frac{1}{2} \int_0^t (\dot{x} - f(x))^2 ds$$



Large deviation approximation

$$P(x) \sim e^{-V(x)/\nu}, \qquad V(x) = \inf_{x(0)=x_s, x(\infty)=x} I[x]$$

- Most probable path = min action path = instanton
- Onsager-Machlup 1950s; Graham 1980s; Freidlin-Wentzell 1970-80s
- Semi-classical approximation

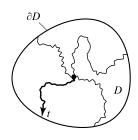
Stationary distribution

Path integral:

$$P(x,t|x_s,0) = \int_{x_s,0}^{x,t} \mathcal{D}[x] P[x]$$

Path probability:

$$P[x] \sim e^{-I[x]/\nu}, \qquad I[x] = \frac{1}{2} \int_0^t (\dot{x} - f(x))^2 ds$$



Large deviation approximation

$$P(x) \sim e^{-V(x)/\nu}, \qquad V(x) = \inf_{x(0)=x_s, x(\infty)=x} I[x]$$

- Most probable path = min action path = instanton
- Onsager-Machlup 1950s; Graham 1980s; Freidlin-Wentzell 1970-80s
- Semi-classical approximation

Example: Gradient dynamics

• Gradient system:

$$\dot{x}(t) = -\nabla U(x(t)) + \sqrt{\nu} \, \xi(t)$$

Stationary distribution:

$$P(x) \sim e^{-V(x)/\nu}, \qquad V(x) = 2U(x)$$

- Instanton = time-reverse of decay path from x to x_s
- Consequence of detailed balance
- Equilibrium system

This talk

$$P(x) \sim e^{-V(x)/\sqrt{\nu}}$$

- Non-gradient system
- Nonequilibrium system
- Not instanton-based

Example: Gradient dynamics

• Gradient system:

$$\dot{x}(t) = -\nabla U(x(t)) + \sqrt{\nu} \, \xi(t)$$

• Stationary distribution:

$$P(x) \sim e^{-V(x)/\nu}, \qquad V(x) = 2U(x)$$

- Instanton = time-reverse of decay path from x to x_s
- Consequence of detailed balance
- Equilibrium system

This talk

$$P(x) \sim e^{-V(x)/\sqrt{\nu}}$$

- Non-gradient system
- Nonequilibrium system
- Not instanton-based

AB model

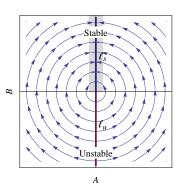
Noiseless dynamics

$$\dot{A} = -AB$$

$$\dot{B} = A^2$$

- Stable line: A = 0, B > 0
- Unstable line: A = 0, B < 0
- Energy:

$$E=A^2+B^2, \qquad \dot{E}=0$$



Perturbed dynamics

$$\dot{A} = -AB - \nu A + \sigma_A \sqrt{\nu} \, \xi_A(t)$$

$$\dot{B} = A^2 - \nu B + \sigma_B \sqrt{\nu} \, \xi_B(t)$$

- Dissipation needed for stationarity
- Toy model of hydrodynamic equations (∞ stable states)

AB model

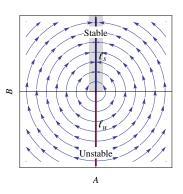
Noiseless dynamics

$$\dot{A} = -AB$$

$$\dot{B} = A^2$$

- Stable line: A = 0, B > 0
- Unstable line: A = 0, B < 0
- Energy:

$$E=A^2+B^2, \qquad \dot{E}=0$$



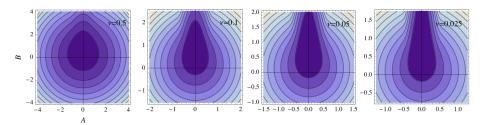
Perturbed dynamics

$$\dot{A} = -AB - \nu A + \sigma_A \sqrt{\nu} \, \xi_A(t)$$

 $\dot{B} = A^2 - \nu B + \sigma_B \sqrt{\nu} \, \xi_B(t)$

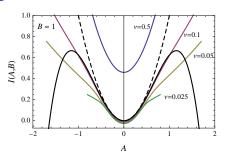
- Dissipation needed for stationarity
- Toy model of hydrodynamic equations (∞ stable states)

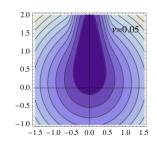
Stationary distribution



- P(A, B)
- Numerical integration of Fokker-Planck equation
- ullet Concentration around stable line as u o 0
- Radial symmetry away from stable line

Large deviations near stable line





Stationary distribution:

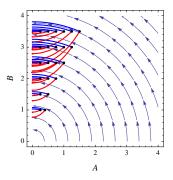
$$P(A, B) \sim e^{-I(A, B)/\nu}$$

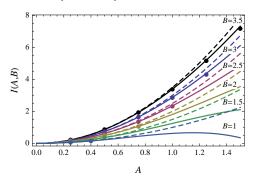
Rate function or quasi-potential:

$$I(A,B) = \frac{B}{\sigma_A^2} A^2 - \frac{2\sigma_A^2 + \sigma_B^2}{8\sigma_A^4 B} A^4 + O(A^6)$$

- Instanton approximation = Fokker-Planck ν -expansion lowest order
- ► Fokker-Planck ν-expansion higher order

Large deviations near stable line (cont'd)

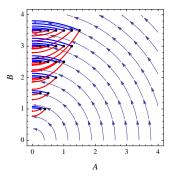


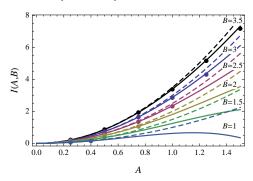


- Instanton: stable line \rightarrow (A, B)
 - I(A,B) = I[instanton] > 0
- Decay path: (A, B) → stable line
 I[decay path] = 0
- Instanton \neq Time reverse of decay path
- Nonequilibrium (non-gradient) system

4□ > 4□ > 4≡ > 4≡ > □ 900

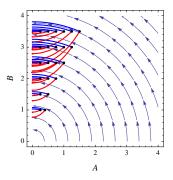
Large deviations near stable line (cont'd)

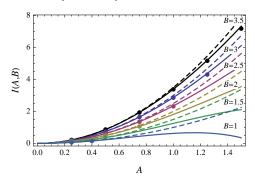




- Instanton: stable line \rightarrow (A, B)
 - I(A, B) = I[instanton] > 0
- Decay path: $(A, B) \rightarrow \text{stable line}$
 - ▶ $I[decay\ path] = 0$
- Instanton \neq Time reverse of decay path
- Nonequilibrium (non-gradient) system

Large deviations near stable line (cont'd)





- Instanton: stable line \rightarrow (A, B)
 - I(A,B) = I[instanton] > 0
- Decay path: $(A, B) \rightarrow \text{stable line}$
 - ▶ I[decay path] = 0
- ullet Instanton eq Time reverse of decay path
- Nonequilibrium (non-gradient) system

←□▶ ←□▶ ←□▶ ←□▶ □ ● ●

Nonequilibrium current

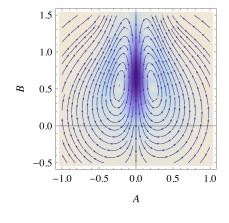
• Fokker-Planck equation:

$$\frac{\partial}{\partial t}P(A,B) = -\nabla \cdot \mathbf{J}$$

Probability current:

$$\mathbf{J}=(J_A,J_B)$$

 \bullet Stationary current: $\nabla \cdot \boldsymbol{J} = 0$



• Components:

$$J_{A} = (-AB - \nu A)P(A, B) - \frac{\nu \sigma_{A}^{2}}{2} \frac{\partial P(A, B)}{\partial A}$$

$$J_{B} = (A^{2} - \nu B)P(A, B) - \frac{\nu \sigma_{B}^{2}}{2} \frac{\partial P(A, B)}{\partial B}$$

Large deviations near unstable line

- Any point (A, B) reachable by instanton of zero action!
- Sub-instanton
- Consequence:

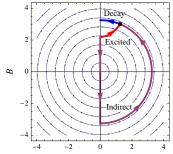
$$P(A,B) \sim e^{-0/\nu}$$

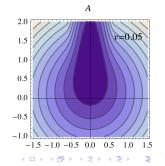
• Meaning:

$$P(A, B) \sim e^{-0/\nu} + \text{corrections}$$

Competings large deviations:

$$P(A,B) \sim \underbrace{e^{-I(A,B)/\nu}}_{\text{stable line}} + \underbrace{e^{-J(A,B)/\sqrt{\nu}}}_{\text{unstable line}}$$





Large deviations near unstable line

- Any point (A, B) reachable by instanton of zero action!
- Sub-instanton
- Consequence:

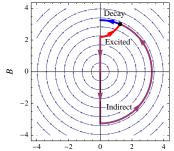
$$P(A,B) \sim e^{-0/\nu}$$

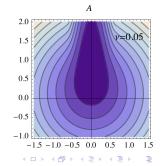
Meaning:

$$P(A, B) \sim e^{-0/\nu} + \text{corrections}$$

Competings large deviations:

$$P(A,B) \sim \underbrace{e^{-I(A,B)/\nu}}_{\text{stable line}} + \underbrace{e^{-J(A,B)/\sqrt{\nu}}}_{\text{unstable line}}$$





Large deviations near unstable line (cont'd)

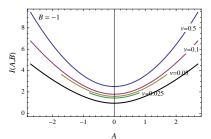
- Low-noise expansion of Fokker-Planck equation
- Ansatz:

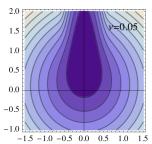
$$P(A, B) \sim e^{-J(A, B)/\sqrt{\nu}}$$

- Hamilton-Jacobi equation for J(A, B)
- Solve in polar coordinates
- Solution:

$$J(r) = \frac{2\sqrt{2}}{3}r^{3/2}$$

$$J(A,B) = \frac{2\sqrt{2}}{3}(A^2 + B^2)^{3/4}$$





12 / 14

• Radially symmetric: Sub-instantons are radially, symmetric. 3 one

Large deviations near unstable line (cont'd)

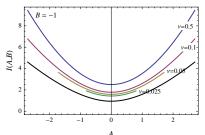
- Low-noise expansion of Fokker-Planck equation
- Ansatz:

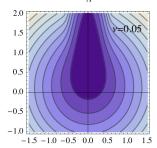
$$P(A, B) \sim e^{-J(A,B)/\sqrt{\nu}}$$

- Hamilton-Jacobi equation for J(A, B)
- Solve in polar coordinates
- Solution:

$$J(r)=\frac{2\sqrt{2}}{3}r^{3/2}$$

$$J(A,B) = \frac{2\sqrt{2}}{3}(A^2 + B^2)^{3/4}$$





Radially symmetric: Sub-instantons are radially symmetric

Summary

- AB model: Nonequilibrium system
- Line of stable points connected to a line of unstable points
- Low-noise large deviations:

$$P(A,B) \sim e^{-I(A,B)/\nu} + e^{-J(A,B)/\sqrt{\nu}}$$
stable line unstable line

- Explicit rate functions
 - ► Instanton approximation (Freidlin-Wentzell)
 - ► Low-noise expansion of Fokker-Planck
- Overall dominant term:

$$P(A,B) \sim e^{-J(A,B)/\sqrt{\nu}}$$

Crucial ingredient: Non-isolated attractor

Summary

- AB model: Nonequilibrium system
- Line of stable points connected to a line of unstable points
- Low-noise large deviations:

$$P(A, B) \sim \underbrace{e^{-I(A,B)/\nu}}_{\text{stable line}} + \underbrace{e^{-J(A,B)/\sqrt{\nu}}}_{\text{unstable line}}$$

- Explicit rate functions
 - Instanton approximation (Freidlin-Wentzell)
 - Low-noise expansion of Fokker-Planck
- Overall dominant term:

$$P(A,B) \sim e^{-J(A,B)/\sqrt{\nu}}$$

Crucial ingredient: Non-isolated attractor

4 D > 4 D > 4 E > 4 E > E 900

Summary

- AB model: Nonequilibrium system
- Line of stable points connected to a line of unstable points
- Low-noise large deviations:

$$P(A, B) \sim \underbrace{e^{-I(A,B)/\nu}}_{\text{stable line}} + \underbrace{e^{-J(A,B)/\sqrt{\nu}}}_{\text{unstable line}}$$

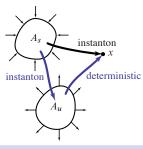
- Explicit rate functions
 - Instanton approximation (Freidlin-Wentzell)
 - Low-noise expansion of Fokker-Planck
- Overall dominant term:

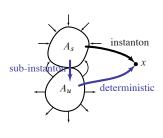
$$P(A, B) \sim e^{-J(A, B)/\sqrt{\nu}}$$

Crucial ingredient: Non-isolated attractor

◄□▶ ◀圖▶ ◀불▶ ◀불▶ 불 ∽Q҈

More general models





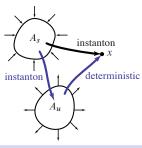
Unconnected sets

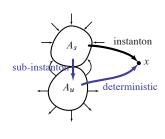
- All fluctuations paths are instantons
- $P(x) \sim e^{-I[\text{instanton}]/\nu}$
- Classical large deviations
- Exponent $\alpha = \frac{1}{2}$ always?
- Need nonequilibrium?

Connected sets

- Instantons + sub-instantons
- $P(x) \sim e^{-I[\text{sub-instanton}]/\nu^{\alpha}}$
- Classical + non-classical large deviations

More general models





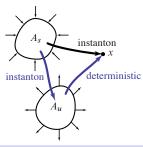
Unconnected sets

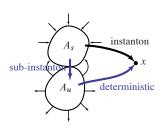
- All fluctuations paths are instantons
- $P(x) \sim e^{-I[\text{instanton}]/\nu}$
- Classical large deviations
- Exponent $\alpha = \frac{1}{2}$ always?
- Need nonequilibrium?

Connected sets

- Instantons + sub-instantons
- $P(x) \sim e^{-I[\text{sub-instanton}]/\nu^{\alpha}}$
- Classical + non-classical large deviations

More general models





Unconnected sets

- All fluctuations paths are instantons
- $P(x) \sim e^{-I[\text{instanton}]/\nu}$
- Classical large deviations
- Exponent $\alpha = \frac{1}{2}$ always?
- Need nonequilibrium?

Connected sets

- Instantons + sub-instantons
- $P(x) \sim e^{-I[\text{sub-instanton}]/\nu^{\alpha}}$
- Classical + non-classical large deviations