Simulating rare events in dynamical processes

Cristian Giardina, Jorge Kurchan, Vivien Lecomte, Julien Tailleur

Laboratoire MSC CNRS - Université Paris Diderot

Computation of transition trajectories and rare events in non-equilibrium systems

• Fluctuations of chaoticity in dynamical systems

• Large deviation functions in interacting particle systems

• Fluctuations of chaoticity in dynamical systems

• Large deviation functions in interacting particle systems

J. Tailleur (CNRS-Univ Paris Diderot)

13 June 2012 2 / 25

Fluctuations in dynamical systems

Phase space is non uniform

- KAM Theorem, Arnol'd Web
- Laminar vs turbulent flows
- Solitons and Breathers in a non-linear crystals
- Regular orbits in planetary systems

Fluctuations in dynamical systems

Phase space is non uniform

- KAM Theorem, Arnol'd Web
- Laminar vs turbulent flows
- Solitons and Breathers in a non-linear crystals
- Regular orbits in planetary systems

Fluctuations of chaoticity

- Sensitivity to initial conditions
- Fluct. of Lyapunov exponents [Ruelle 78, Benzi 84, Grassberger 88]
- Lots of theory, few applications in physics

Lyapunov exponents

• Divergence of nearby trajectories

•
$$\lambda(t) \underset{t \to \infty}{\sim} \lambda$$
 : Lyapunov exponent

$$\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x})$$

$$\dot{\mathbf{u}} = rac{\partial \mathbf{f}(\mathbf{x})}{\partial \mathbf{x}} \mathbf{u}$$

• Fluctuations $\longrightarrow P(\lambda, t)$

• Total time $t \gg \delta t \gg$ correlation time τ ;

•
$$\frac{|u(t)|}{|u(0)|} \equiv e^{\lambda t} = \prod_k \frac{|u(k\delta t)|}{|u((k-1)\delta t)|} = e^{(\lambda_1 + \dots + \lambda_{t/\delta t})\delta t}$$

• Total time $t \gg \delta t \gg$ correlation time τ ;

•
$$\frac{|u(t)|}{|u(0)|} \equiv e^{\lambda t} = \prod_k \frac{|u(k\delta t)|}{|u((k-1)\delta t)|} = e^{(\lambda_1 + \dots + \lambda_{t/\delta t})\delta t}$$

$$P(\lambda, t) = \int \prod_{i} d\lambda_{i} P(\lambda_{1}, \delta t) \dots P(\lambda_{t/\delta t}, \delta t)$$
$$(\lambda_{1} + \dots + \lambda_{t/\delta t}) \delta t = \lambda t$$

• Total time $t \gg \delta t \gg$ correlation time τ ;

•
$$\frac{|u(t)|}{|u(0)|} \equiv e^{\lambda t} = \prod_k \frac{|u(k\delta t)|}{|u((k-1)\delta t)|} = e^{(\lambda_1 + \dots + \lambda_{t/\delta t})\delta t}$$

$$P(\lambda, t) = \int \prod_{i} d\lambda_{i} P(\lambda_{1}, \delta t) \dots P(\lambda_{t/\delta t}, \delta t)$$

$$(\lambda_{1} + \dots + \lambda_{t/\delta t}) \delta t = \lambda t$$

$$= \int \pi_i d\lambda_i \, \mathbf{e}^{S(\lambda_1, \delta t) + \dots + S(\lambda_{t/\delta t}, \delta t)}_{(\lambda_1 + \dots + \lambda_{t/\delta t}) \delta t = \lambda t}$$

• Total time $t \gg \delta t \gg$ correlation time τ ;

•
$$\frac{|u(t)|}{|u(0)|} \equiv e^{\lambda t} = \prod_k \frac{|u(k\delta t)|}{|u((k-1)\delta t)|} = e^{(\lambda_1 + \dots + \lambda_{t/\delta t})\delta t}$$

$$P(\lambda, t) = \int \prod_{i} d\lambda_{i} P(\lambda_{1}, \delta t) \dots P(\lambda_{t/\delta t}, \delta t)$$
$$(\lambda_{1} + \dots + \lambda_{t/\delta t}) \delta t = \lambda t$$

$$= \int \pi_i d\lambda_i \, \mathbf{e}^{S(\lambda_1, \delta t) + \dots + S(\lambda_{t/\delta t}, \delta t)}_{(\lambda_1 + \dots + \lambda_{t/\delta t})\delta t = \lambda t}$$

 $P(\lambda, t) \simeq e^{ts(\lambda)}$

• The larger the time, the more peaked $P(\lambda, t)$

Numerical methods

Sample $P(\lambda, t) \simeq e^{ts(\lambda)}$

- Frequency map analysis (Laskar 93)
- Spectral analysis (Sepulveda, Badi, Pollak 95)
- Fast Lyapunov indicator (Lega 96)
- Correlation functions (Pollner, Vattay 96)
- Fast Lyapunov indicator (Froeschlé, Lega, Gongzi 97)
- SALI (Skokos 01)

Random sampling $\longrightarrow \lambda^*$ s.t. $s'(\lambda^*) = 0$

Grid → Low dimension only

The thermodynamics of trajectories

• Give a weight $exp(\alpha \lambda t)$ to each trajectory

$$P_{\alpha}(\lambda, t) = \frac{1}{Z_{\alpha}} P(\lambda, t) e^{\alpha \lambda t}$$

$$Z_{\alpha}(t) = \langle \mathrm{e}^{\alpha \lambda t} \rangle$$

The thermodynamics of trajectories

• Give a weight $exp(\alpha \lambda t)$ to each trajectory

$$P_{\alpha}(\lambda, t) = \frac{1}{Z_{\alpha}} P(\lambda, t) e^{\alpha \lambda t} \underset{t \to \infty}{\propto} e^{t[s(\lambda) + \alpha \lambda]} \qquad Z_{\alpha}(t) = \langle e^{\alpha \lambda t} \rangle$$

The thermodynamics of trajectories

• Give a weight $exp(\alpha \lambda t)$ to each trajectory

$$P_{\alpha}(\lambda, t) = \frac{1}{Z_{\alpha}} P(\lambda, t) e^{\alpha \lambda t} \underset{t \to \infty}{\propto} e^{t[s(\lambda) + \alpha \lambda]} \qquad Z_{\alpha}(t) = \langle e^{\alpha \lambda t} \rangle$$

• Trajectories with $\lambda^*(\alpha)$ dominate

$$s'(\lambda^*) = -\alpha$$
 differs from $s'(\lambda^*) = 0$

Temperature and entropy

$$P_{\alpha}(\lambda, t) \underset{t \to \infty}{\propto} e^{t[s(\lambda) + \alpha\lambda]} \qquad Z_{\alpha}(t) = \langle e^{\alpha\lambda t} \rangle$$

• $\lambda \leftrightarrow$ Macrostate

Temperature and entropy

$$P_{\alpha}(\lambda, t) \underset{t \to \infty}{\propto} \mathrm{e}^{t[s(\lambda) + \alpha\lambda]} \qquad Z_{\alpha}(t) = \langle \mathrm{e}^{\alpha\lambda t} \rangle$$

- $\lambda \leftrightarrow$ Macrostate
- $\alpha \leftrightarrow$ Temperature
 - $\alpha > 0$ favors chaos
 - $\alpha < 0$ favors order

Temperature and entropy

$$P_{\alpha}(\lambda, t) \underset{t \to \infty}{\propto} \mathrm{e}^{t[s(\lambda) + \alpha\lambda]} \qquad Z_{\alpha}(t) = \langle \mathrm{e}^{\alpha\lambda t} \rangle$$

- $\lambda \leftrightarrow$ Macrostate
- $\alpha \leftrightarrow$ Temperature
 - $\alpha > 0$ favors chaos
 - $\alpha < 0$ favors order
- Z_{α} is a dynamical partition function
- $\mu(\alpha) = \frac{1}{t} \log[Z_{\alpha}]$ is a dynamical free energy

Language of dynamical transitions (e.g. transition to turbulence)

Lyapunov Weighted Dynamics [Nat. Phys., 3, 203 (2007)]

• \mathcal{N} copies/clones of the system (\mathbf{x}, \mathbf{u}) . At each dt:

Lyapunov Weighted Dynamics [Nat. Phys., 3, 203 (2007)]

- \mathcal{N} copies/clones of the system (\mathbf{x}, \mathbf{u}) . At each dt:
- Each copy evolve with $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}); \ \dot{\mathbf{u}} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \mathbf{u}$
- For each copy, we compute $\left(\frac{|u(t+dt)|}{|u(t)|}\right)^{\alpha} \equiv \exp(\alpha\lambda dt)$

Lyapunov Weighted Dynamics [Nat. Phys., 3, 203 (2007)]

- \mathcal{N} copies/clones of the system (\mathbf{x}, \mathbf{u}) . At each dt:
- Each copy evolve with $\dot{\mathbf{x}} = \mathbf{f}(\mathbf{x}); \ \dot{\mathbf{u}} = \frac{\partial \mathbf{f}}{\partial \mathbf{x}} \mathbf{u}$
- For each copy, we compute $\left(\frac{|u(t+dt)|}{|u(t)|}\right)^{\alpha} \equiv \exp(\alpha\lambda dt)$
- Each copy is replaced by [on average] $exp(\alpha\lambda dt)$ copies

At time t, 1 clone $\rightarrow \exp(\alpha \lambda t)$ copies

 $\mathcal{N}(t)/\mathcal{N}(0) \simeq \langle \exp(\alpha \lambda t) \rangle \sim \exp[\mu(\alpha) t]$

Two important 'tricks'

To prevent the number of clones to diverge or vanish
 → overall cloning rate R(t + dt) = N(t)/N(t + dt)
 ⟨exp(αλt)⟩ ~ exp[μ(α)t] = ∏_t R(t)

Two important 'tricks'

- To prevent the number of clones to diverge or vanish → overall cloning rate $R(t + dt) = \mathcal{N}(t)/\mathcal{N}(t + dt)$ $\langle \exp(\alpha \lambda t) \rangle \sim \exp[\mu(\alpha)t] = \prod_t R(t)$
- To prevent degeneracy of clones
 - → small noise:
 - when we replicate the clones
 - to the dynamics

An integrable case : The double well potential

Localizing the separatrix

$$H(q,p) = \frac{p^2}{2} + (1-q^2)^2$$

LWD with $\alpha = 1$

An integrable case : The double well potential

Localizing the separatrix

$$H(q,p) = \frac{p^2}{2} + (1-q^2)^2$$

LWD with $\alpha = 1$

A toy model to study the transition to Chaos

The Standard Map

• $p_{n+1} = p_n - \frac{k\delta}{2\pi}\sin(2\pi q_n)$ $q_{n+1} = q_n + \delta p_{n+1}$

• Chaoticity increases with k, δ

A toy model to study the transition to Chaos

The Standard Map

• $p_{n+1} = p_n - \frac{k\delta}{2\pi}\sin(2\pi q_n)$ $q_{n+1} = q_n + \delta p_{n+1}$

• Chaoticity increases with k, δ

Almost Integrable Case ($\delta = 0.45, k = 1$); LWD with $\alpha = 1$

A mixed case

 $k = 1, \ \delta = 1, \ \alpha = 1$ LWD $\alpha = 1$

Integrable islands in a chaotic sea

 $k = 7.8, \ \delta = 1, \ \alpha = -1$ LWD $\alpha = -1$

 $\lambda(\alpha) = \mu'(\alpha) = Z_{\alpha}^{-1} \int d\lambda \, \lambda \, P(\lambda) \, e^{\alpha \lambda t}$

 $\mu(\alpha) = \frac{1}{t} \log(Z_{\alpha})$

 $\lambda(\alpha) = \mu'(\alpha) = Z_{\alpha}^{-1} \int d\lambda \,\lambda \, P(\lambda) \,\mathrm{e}^{\alpha \lambda t}$

 $\mu(\alpha) = \frac{1}{t} \log(Z_{\alpha})$

 $\lambda(\alpha) = \mu'(\alpha) = Z_{\alpha}^{-1} \int d\lambda \,\lambda \, P(\lambda) \,\mathrm{e}^{\alpha \lambda t}$

 $\mu(\alpha) = \frac{1}{t} \log(Z_{\alpha})$

First order transition point

The Fermi Pasta Tsingou Ulam chain

Chain of non-linear oscillators

$$H = \sum_{i=1}^{N} \left(\frac{1}{2} p_i^2 + \frac{1}{2} (x_i - x_{i+1})^2 + \frac{\beta}{4} (x_i - x_{i+1})^4 \right)$$

• $\beta = 0 \iff$ uncoupled fourier modes

$$\omega_k = 2\sin\left(\frac{\pi k}{N}\right)$$

Equilibrium

LWD with $\alpha = 5N$ (N=128)

LWD with $\alpha = 5N$ (N=1024)

LWD with $\alpha \ll -1$

Phase transition? Scaling with N...

• How do the fluctuations of λ scale with N?

$$P(\lambda, t) \simeq e^{tN^{\xi}s(\lambda, t, N)}; \qquad s(\lambda, t, N) \underset{N, t \to \infty}{\sim} \mathcal{O}(1)$$

$$Z_{\alpha} = \int \mathrm{d}\lambda \mathrm{e}^{\alpha\lambda t + tN^{\xi}s(\lambda)}$$

• Select
$$\lambda^*$$
: $s'(\lambda^*) = -\frac{\alpha}{N^{\xi}} \xrightarrow[N \to \infty]{} 0$

 Need to find the good scaling (hard !) see [Kuptsov& Politi PRL 2011]

Conclusion Part I

- Numerical method to sample the fluctuations of λ
- Detect atypical trajectories
- Study dynamical phase transition (turbulence !)
- [J. Tailleur, J. Kurchan, Nature Physics, 3, p. 203-207, (2007)]

• Statistical mechanics in trajectories space

Statistical mechanics in trajectories space

• Observable $Q = \sum_{k} Q_{\mathcal{C}_k, \mathcal{C}_{k+1}} \equiv q \cdot t$

Statistical mechanics in trajectories space

- Observable $Q = \sum_{k} Q_{\mathcal{C}_k, \mathcal{C}_{k+1}} \equiv q \cdot t$
- Microcanonical ensemble $P(Q_0) = \langle \delta(Q Q_0) \rangle$

Statistical mechanics in trajectories space

- Observable $Q = \sum_{k} Q_{\mathcal{C}_k, \mathcal{C}_{k+1}} \equiv q \cdot t$
- Microcanonical ensemble $P(Q_0) = \langle \delta(Q Q_0) \rangle$
- Canonical ensemble $Z(\beta) = \langle e^{-\beta Q} \rangle \sim e^{-t\psi(\beta)}$

$$t_0 = 0 \qquad t_1 \qquad t_2 \qquad \dots \qquad t_{K-1} \qquad t_K \qquad t$$

$$C_0 \qquad C_1 \qquad C_2 \qquad C_{K-1} \qquad C_K \qquad C = C_K$$

Statistical mechanics in trajectories space

- Observable $Q = \sum_{k} Q_{\mathcal{C}_k, \mathcal{C}_{k+1}} \equiv q \cdot t$
- Microcanonical ensemble $P(Q_0) = \langle \delta(Q Q_0) \rangle$
- Canonical ensemble $Z(\beta) = \langle e^{-\beta Q} \rangle \sim e^{-t\psi(\beta)}$

 $\psi(\beta)$ is a dynamical free energy How can one compute it ?

20/25

Computation of
$$Z(eta) = \langle e^{-eta Q}
angle$$

• Transition rates $W(\mathcal{C} \to \mathcal{C}')$

$$\partial_t P(\mathcal{C}) = \sum_{\mathcal{C}' \neq \mathcal{C}} W(\mathcal{C}' \to \mathcal{C}) P(\mathcal{C}') - r(\mathcal{C}) P(\mathcal{C})$$

• Escape rate
$$r(\mathcal{C}) = \sum_{\mathcal{C}' \neq \mathcal{C}} W(\mathcal{C} \rightarrow C')$$

Computation of
$$Z(eta) = \langle e^{-eta Q}
angle$$

• Transition rates $W(\mathcal{C} \to \mathcal{C}')$

$$\partial_t P(\mathcal{C}) = \sum_{\mathcal{C}' \neq \mathcal{C}} W(\mathcal{C}' \to \mathcal{C}) P(\mathcal{C}') - r(\mathcal{C}) P(\mathcal{C})$$

- Escape rate $r(\mathcal{C}) = \sum_{\mathcal{C}' \neq \mathcal{C}} W(\mathcal{C} \rightarrow C')$
- Joint probability $P(Q, C, t) \rightarrow \hat{P}_{\beta}(C, t) = \sum_{Q} e^{-\beta Q} P(Q, C, t)$

Computation of
$$Z(eta) = \langle e^{-eta Q}
angle$$

• Transition rates $W(\mathcal{C} \to \mathcal{C}')$

$$\partial_t P(\mathcal{C}) = \sum_{\mathcal{C}' \neq \mathcal{C}} W(\mathcal{C}' \to \mathcal{C}) P(\mathcal{C}') - r(\mathcal{C}) P(\mathcal{C})$$

- Escape rate $r(\mathcal{C}) = \sum_{\mathcal{C}' \neq \mathcal{C}} W(\mathcal{C} \rightarrow C')$
- Joint probability $P(Q, C, t) \rightarrow \hat{P}_{\beta}(C, t) = \sum_{Q} e^{-\beta Q} P(Q, C, t)$

•
$$Z(\beta) = \sum_{\mathcal{C}} \hat{P}_{\beta}(\mathcal{C}, t)$$

Computation of $Z(\beta) = \langle e^{-\beta Q} \rangle$

•
$$W_{\beta}(\mathcal{C} \to \mathcal{C}') = e^{-\beta Q_{\mathcal{C},\mathcal{C}'}} W(\mathcal{C} \to \mathcal{C}')$$

$$\partial_t \hat{P}_{\beta}(\mathcal{C}) = \sum_{\mathcal{C}' \neq \mathcal{C}} W_{\beta}(\mathcal{C}' \to \mathcal{C}) \hat{P}_{\beta}(\mathcal{C}') - r_{\beta}(\mathcal{C}) \hat{P}_{\beta}(\mathcal{C}) + (r_{\beta}(\mathcal{C}) - r(\mathcal{C})) \hat{P}_{\beta}(\mathcal{C})$$

• Escape rate
$$r_{\beta}(\mathcal{C}) = \sum_{\mathcal{C}' \neq \mathcal{C}} W_{\beta}(\mathcal{C} \rightarrow C')$$

• Joint probability $P(Q, C, t) \rightarrow \hat{P}_{\beta}(C, t) = \sum_{Q} e^{-\beta Q} P(Q, C, t)$

•
$$Z(\beta) = \sum_{\mathcal{C}} \hat{P}_{\beta}(\mathcal{C}, t)$$

Computation of $Z(\beta) = \langle e^{-\beta Q} \rangle$

•
$$W_{\beta}(\mathcal{C} \to \mathcal{C}') = e^{-\beta Q_{\mathcal{C},\mathcal{C}'}} W(\mathcal{C} \to \mathcal{C}')$$

$$\partial_t \hat{P}_{\beta}(\mathcal{C}) = \sum_{\mathcal{C}' \neq \mathcal{C}} W_{\beta}(\mathcal{C}' \to \mathcal{C}) \hat{P}_{\beta}(\mathcal{C}') - r_{\beta}(\mathcal{C}) \hat{P}_{\beta}(\mathcal{C}) + (r_{\beta}(\mathcal{C}) - r(\mathcal{C})) \hat{P}_{\beta}(\mathcal{C})$$

• Escape rate
$$r_{\beta}(\mathcal{C}) = \sum_{\mathcal{C}' \neq \mathcal{C}} W_{\beta}(\mathcal{C} \rightarrow C')$$

•
$$(r_{\beta}(\mathcal{C}) - r(\mathcal{C}))\hat{P}_{\beta}(\mathcal{C}) \longrightarrow \sum_{\mathcal{C}} \hat{P}_{\beta}$$
 not conserved

•
$$Z(\beta) = \sum_{\mathcal{C}} \hat{P}_{\beta}(\mathcal{C}, t)$$

Computation of $Z(\beta) = \langle e^{-\beta Q} \rangle$

•
$$W_{\beta}(\mathcal{C} \to \mathcal{C}') = e^{-\beta Q_{\mathcal{C},\mathcal{C}'}} W(\mathcal{C} \to \mathcal{C}')$$

$$\partial_t \hat{P}_{\beta}(\mathcal{C}) = \sum_{\mathcal{C}' \neq \mathcal{C}} W_{\beta}(\mathcal{C}' \to \mathcal{C}) \hat{P}_{\beta}(\mathcal{C}') - r_{\beta}(\mathcal{C}) \hat{P}_{\beta}(\mathcal{C}) + (r_{\beta}(\mathcal{C}) - r(\mathcal{C})) \hat{P}_{\beta}(\mathcal{C})$$

• Escape rate
$$r_{\beta}(\mathcal{C}) = \sum_{\mathcal{C}' \neq \mathcal{C}} W_{\beta}(\mathcal{C} \rightarrow C')$$

• $(r_{\beta}(\mathcal{C}) - r(\mathcal{C}))\hat{P}_{\beta}(\mathcal{C}) \longrightarrow \sum_{\mathcal{C}} \hat{P}_{\beta}$ not conserved

• Population dynamics: $Z(\beta, t) = \sum_{\mathcal{C}} \hat{P}_{\beta}(\mathcal{C}, t) = N(t)/N(0)$

J. Tailleur (CNRS-Univ Paris Diderot)

• N copies of the system evolve with rates W_{β}

• N copies of the system evolve with rates W_{β}

$$t_0 = 0 \qquad t_1 \qquad t_2 \qquad \dots \qquad t_{K-1} \quad t_K \qquad t$$

$$C_0 \qquad C_1 \qquad C_2 \qquad C_{K-1} \quad C_K \qquad C = C_K$$

• Cloning term $\propto e^{(t_{k+1}-t_k)[r_\beta(\mathcal{C}_k)-r(\mathcal{C}_k)]}$

• N copies of the system evolve with rates W_{β}

$$t_0 = 0 \qquad t_1 \qquad t_2 \qquad \dots \qquad t_{K-1} \quad t_K \qquad t$$

$$C_0 \qquad C_1 \qquad C_2 \qquad C_{K-1} \quad C_K \qquad C = C_K$$

• Cloning term
$$\propto e^{(t_{k+1}-t_k)[r_\beta(\mathcal{C}_k)-r(\mathcal{C}_k)]}$$

• $Z(\beta) = \frac{N(t)}{N}$

N copies of the system evolve with rates W_β

$$t_0 = 0 \qquad t_1 \qquad t_2 \qquad \dots \qquad t_{K-1} \quad t_K \qquad t$$

$$C_0 \qquad C_1 \qquad C_2 \qquad C_{K-1} \quad C_K \qquad C = C_K$$

• Cloning term $\propto e^{(t_{k+1}-t_k)[r_\beta(\mathcal{C}_k)-r(\mathcal{C}_k)]} \longrightarrow N'_k$ copies

• The population is rescaled by $R_k = \frac{N'_k}{N}$

N copies of the system evolve with rates W_β

$$t_0 = 0 \qquad t_1 \qquad t_2 \qquad \dots \qquad t_{K-1} \quad t_K \qquad t$$

$$C_0 \qquad C_1 \qquad C_2 \qquad C_{K-1} \quad C_K \qquad C = C_K$$

• Cloning term $\propto e^{(t_{k+1}-t_k)[r_\beta(\mathcal{C}_k)-r(\mathcal{C}_k)]} \longrightarrow N'_k$ copies

• The population is rescaled by $R_k = \frac{N'_k}{N}$

$$\mathbf{Z}(\beta) = \prod_{\mathbf{k}} \mathbf{R}_{\mathbf{k}} \qquad \psi(\beta) = \lim_{\mathbf{t} \to \infty} \frac{1}{\mathbf{t}} \sum_{\mathbf{k}} \log \mathbf{R}_{\mathbf{k}}$$

SSEP

SSEP

SSEP

SSEP

ASEP

• LDF of the particle current J (N = 200 L = 400 p = 1.2 q = 0.8)

• LDF of the particle current J (N = 200 L = 400 p = 1.2 q = 0.8)

ASEP

• Typical density profiles for $\beta \neq 0$

Small current

ASEP

• Typical density profiles for $\beta \neq 0$

24/25

Conclusion Part II

- A population dynamics with modified rates allows us to compute large deviation functions
- [C. Giardina, J. Kurchan, L. Peliti, PRL 96, 120603 (2006)]
- [V. Lecomte, J. Tailleur, J. Stat. Mech, P03004 (2007)]
- [J. Tailleur, V. Lecomte, arxiv:0811.1041]
- [C. Giardina, J. Kurchan, V. Lecomte, J. Tailleur, J. Stat. Phys. 145, 787 (2011)]
- Several methods available (DMRG, cloning, TPS)
 → Clarify what works best in which case ?!

Conclusion Part II

- A population dynamics with modified rates allows us to compute large deviation functions
- [C. Giardina, J. Kurchan, L. Peliti, PRL 96, 120603 (2006)]
- [V. Lecomte, J. Tailleur, J. Stat. Mech, P03004 (2007)]
- [J. Tailleur, V. Lecomte, arxiv:0811.1041]
- [C. Giardina, J. Kurchan, V. Lecomte, J. Tailleur, J. Stat. Phys. 145, 787 (2011)]
- Several methods available (DMRG, cloning, TPS)
 → Clarify what works best in which case ?!

Conclusion Part II

- A population dynamics with modified rates allows us to compute large deviation functions
- [C. Giardina, J. Kurchan, L. Peliti, PRL 96, 120603 (2006)]
- [V. Lecomte, J. Tailleur, J. Stat. Mech, P03004 (2007)]
- [J. Tailleur, V. Lecomte, arxiv:0811.1041]
- [C. Giardina, J. Kurchan, V. Lecomte, J. Tailleur, J. Stat. Phys. 145, 787 (2011)]
- Several methods available (DMRG, cloning, TPS)
 → Clarify what works best in which case ?!