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Extinction risk & rare events

We will introduce a model that may be
interesting in population biology and ecology
with a surprising result.

— Like many population problems, this one lacks
detailed balance.

We are interested in a rare event, extinction of a
metapopulation.

We do the problem numerically and, in the limit
of large populations, in the WKB (eikonal)
approximation.

The most interesting results are not given by
WKB.
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Ecological motivation

Populations of animals and plants are often
fragmented and live on small patches of habitat.
(Meta-population)

A local population is prone to extinction because
of the shot noise of birth and death processes.

The whole meta-population, however, might

persist much longer in a balance between local
extinctions and re-colonizations

Is there an optimal migration rate that maximizes
the mean time to extinction (MTE) of the meta-
population?
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A tale of two trees (or a forest)

Suppose the same species lives
on two patches of habitat.

The two patches differ only by
how favorable they are: i.e. one
has a larger carrying capacity
(steady state population) than
the other.

Question: what is the best
strategy for long-term survival?
Migrate or not?

— ‘Always stay home’ seems
better for the better patch.

— ‘Migrate often’ seems better
for the worse patch.

What is better for the
population as a whole?

We will generalize to a network
of N trees.
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Minimizing extinction risk, 2 sites

When the patches are uncoupled, each is

expected to have a steady state population:
K=K, K,=KkK, K>>1, k<1

(one good place, one bad place).

Populations go extinct as a result of rare, large

fluctuations in birth/death rates.

T = mean time to extinction obeys

T~ exp(K.S), S of order unity, see below.
* Thus the ‘bad’ patch has much faster extinction.
* We always neglect prefactors.

Guesses for the best strategy:

— Exclude the poor that live elsewhere.
Avoid the bad tree — select u=0.

— Share the wealth.

Migrate to share the risk -select u very large.

Our result: Neither strategy is optimum:
The best migration rate is small, but
not zero.
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Model

* Dynamics: m=# on good site, n=# on bad site
Birth: XoX+X, (rate 1, sets time unit).
Death: X+X=0, (rate 1/K.)

Migration: m, nes> m-1, n+1 (rate u)

* Mean field model: x=m/K, y=n/K, K,=kK, K,=K:
— dx/dt=x-x2 - u(xy)
dy/dt =y - y?/K - u(y-x)
* Fixed points: [x*(i,u), y*(i,u)]; [0,0].
e u=0: x*=1; y*=x.
o u=00: x*= y*=2k/(1+K); 1/x* = 1/y* = (1/2)(1+1/x).

— Effective carrying capacity per site is the harmonic mean

1/Koe = (1/2) (1/K, + 1/K,),
dominated by smaller K. Total capacity is 4x/(1+x).
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Best strategy (hand waving)

For no migration at all, the bad site goes extinct

quickly,
T, ~ exp(SK,),
and the extinction of the population is ;
dominated by estu
T, ~ exp(SK,). T /

For very fast migration, both populations go to
the harmonic mean, K ¢, which is less than K;.
T~ exp(2SK ¢).

However: when the good site is going extinct, if
there is a very small migration rate, the bad site
can serve as a refuge and re-colonize the good u
Site.

— If you get into trouble, you may need help from your
poor neighbors!

— This turns out to give the maximum T.
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Maximum extinction time

Recolonization and synchronization:

When both sites go extinct, they must be synchronized: the
time of extinction cannot differ by longer than the time to
transfer one agent, t.=1/ukK, and rescue the empty site.

We will assume uk>1, so t, is a short time.
If u<<1 the on-site dynamics is unaffected by migration.

In order to have extinction we need both sites to go extinct
together within time t,. The probability for this is the product
of probabilities:
t.2 w,exp(-K;S) w,exp(-K,S)
Thus the effective carrying capacity for u ~ 1/Kis the sum:
T(u=0%) ~ exp[S(K,+K,)] > T(u=0) > T(u=°)
All of this will be checked in two ways: WKB and numerically.
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Master equation
* Master equation for probability P(m,n):

: . (m+1)(m+2) (n+1)(n+2)

m,n :I_-,PmnE _1Pm—n _1Pmn— Pm n Pmn
+u(m+1)P, +u(n+1)P (14 p)(m+ )+m<m_1)+n<n_1)P
pm m+1n—1 HATY m—1,n+1 p)m+n K K m,n-

* Extinction probability: dP, o/dt =P, ,/K + P, ,/kK

e Quasi-stationary state: MFT, x*, y*.

* Master equation is linear: Expand in eigenvalues

AP =-P/T,. P=2ZP, exp(-t/T,).

* Large eigenvalues give fast relaxation to x*,y*.

* Smallest non-zero eigenvalue gives extinction time:
* P = etV Py~ [1-etYD] T=T,

*Tis large; Hm,, =, . /T~O0.

1/T = [,/ + 7 /K]
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WKB approximation

* We expect i to have an exponentially small tail in the
region near 0,0.

— WKB ansatz (Kubo, 73, ...): m, . =exp(-KS(x,y)); S is the action.
— Set x=m/K; y=n/K; treat as continuous variables.

e Put ansatz in master equation: replace differences in
m,n by derivatives in X,y.

e Equation for S to leading order in 1/K has the form of a
Hamilton-Jacobi equation: we have a classical
mechanics problem.

H(xz,y,0,5,0,5) =0; py =0,5; py=0,5
2

94 _
H(xayapxapy) - aj(epw o 1) + 7 (6 e — ]‘)

2
Yy _
+vy (epy — 1) -+ % (6 2Py _ 1)

—|—/L£E (G_Pm—l-]?y _ ]_) + Ly (epm_py _ ]_) .
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HJ equations and classical mechanics

* The PDE H(x,y,p,,p,)=0 can be solved by characteristics, i.e.
finding paths x(t),y(t).

* |n physics terms we have to find the path of a fictitious
particle with E=0 whose equations of motion are:

& =0, Hipy = —0, H
Y = @pyH;]ﬁy = —0,H

* We need to find the instanton, the path (x,y,p,,p,) that
goes from the quasi-stationary state,

(x*,y*,0,0) (t=-o°) to the exit point (0,0).

— For technical reasons, for this type of extinction the momenta at
the exit are infinite: the exit point is actually (0,0,-oo, -o0).

* The instanton is the path with the least action:

S = /(pa;dilj +pydy)
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Solving the classical problem

* Four dimensional phase space, one constraint,
so 3d.

* |n general must solve numerically by shooting.

0.8
! k=0.25,

| Circles, WKB, numerical,
Red line, numerical

| solution of master
equation,

Diamond, u==0,
Square, u -> 0%,

Dotted line, T~ exp(2K ¢)

K1inT

0.4
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Path to extinction

* For large K the
extinction time is
dominated by one

path. Y

 There is no path for
the dynamics that
starts at (x*,y*,0,0)
and stays in p,=p,=0.

* We need the action
along the path. X
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Analytics: limit of slow migration

* For u »0* the problem separates:
H(ﬂ?,y,px7py)z$ (6pw o 1) + % (e—qu; o 1)

2

+y (ePv — 1) + g—ﬁ (e7?Pv —1) =0
e Solutions: 002p: 002Dy
2(pa) = oy W) = oy

* For the action we add carrying capacities:

S(p — 0) :/ a:(px)dpm+/ y(py)dpy

=2(1-In2)(1+kK)~InT, /K.
— This is much larger than what we get if we start with
u==0, i.e. just the first term.
— We have argued that near u=0* the populations are
synchronized — this leads to the different behavior.
* We can also give a more formal proof.
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Limit of fast migration

* For u>>1, make a change of variables:
— Q = x+y (total population, slow variable)
— g=X,
— and corresponding momenta, p, P.
* We find, for u >>1, a Hamiltonian for the slow

variables: -
Hiiow(@, P) = = (/) |Q(e” =1) + =@ (727 = 1) .

* As we already guessed: Z/Keﬁ=(1/2)(1/1< +1):
InT) 0o 8(1—1In2)k

K 1+ K
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K1 InT

Numerics

WKB does not resolve the boundary layer where T rises from the
uncoupled value to the maximum.

— This occurs for u ~ 1/K, where WKB is not valid.
— This means one transfer per generation.

We simulate the Markov process directly.
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Many patches

We can generalize the result to a network of
patches with different carrying capacities.

— We assume K=x,K, w;=0;u, K, 0; order unity.
Large u gives an effective carrying capacity for
the whole population: k4 = N2/Zk. ™.
Small n gives synchronization for

1/(nK) < w<1/n,

n=typical number of bonds.

We think that the maximum time for
extinction is at u ~ 1/(nK).
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Discussion

WKB theory is valid for u >> 1/K, can’t resolve
smaller time scales.

— Result is a finite jump at u=0.

— We can show that for 1/K<< u <<1, T decreases.

If the sites are identical, T is constant after the
jump.

Numerically we find pu.eq ~ 1/K.

For many patches the story is similar.

This is a generic effect, not only for this dynamics.
We have forthcoming work to show the class of
models for which the same results hold.
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Evolution of dispersion rates

 The standard lore in ecology is that organisms evolve
non-zero dispersion rates only to be able to deal with
non-constant resources.

— Here, the habitats are constant, and evolution would favor
u >0. This is to deal with fluctuation-induced extinction.

* We have given another example where fluctuations
favor u >0, competition of a fast with a slow species:
— D. Kessler and L. Sander, Fluctuations and dispersal rates in

population dynamics, Physical Review E, 80, 041907
(2009).

— J. N. Waddell, L. M. Sander, and C. R. Doering,
Demographic Stochasticity versus Spatial Variation in the

Competition between Fast and Slow Dispersers, Theoretical
Population Biology, 77, 279 (2010).

— Work in progress with M. Khasin to treat this in WKB.
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Summary

* For populations distributed among patches,
migration affects the extinction rate.

 The effect is large if the carrying capacity
varies a good deal.

* The time to extinction is longest for a small
migration rate so that the bad patches can
serve as a refuge. They are quite important.

— Moral:
On a souvent besoin de un plus petit que soi.
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