Large deviations and heterogeneities in driven or
non-driven kinetically constrained models

Estelle Pitard

1CNRS, Laboratoire Charles Coulomb,
Montpellier, France

Rare Events in Non-equilibrium Systems- ENS Lyon- 11 June 2012

with: J.P. Garrahan (Nottingham), R.L. Jack (Bath), V. Lecomte, K. van Duijvendijk, F. van Wijland (Paris), F. Turci (Montpellier)

Estelle Pitard Large deviations and heterogeneities in driven or non-driven kinetically constra



Dynamic transition in KCMs- large deviations

Outline

@ Introduction: what is a glassy system?
@ Dynamic transition in Kinetically Constrained Models- large deviations

o Phenomenology of kinetically constrained models (KCMs)

o Relevant order parameters for space-time trajectories: activity K

We will show that in the stationary state, there is a coexistence

between active and inactive trajectories.

@ These trajectories can be probed by tuning an external parameter s,
or "chaoticity temperature”.

o Results: mean-field/ finite dimensions

(9

@ Driven KCMs, current heterogeneities and large deviations

@ A new dynamic phase transition for the integrated current Q
o Fluctuations: large deviation function for the current
@ Link with microscopic spatial heterogeneities
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Introduction

o
o
o
]

What is a glassy phase?

No static signature difference between fluid and glass
No thermodynamical transition, no T,

How can one realize that a system is in a glassy state?

o -either drive it out-of-equilibrium or investigate its relaxation
properties
@ — dramatic increase in viscosity, ageing.

@ Importance of the dynamics and of spatio-temporal heterogeneitites
(Fredrickson-Andersen 1984) — Fluctuations!

@ Models with

o long-lived correlated spatial structures
@ slow, intermittent dynamics.

@ Our choice: Kinetically Constrained Models (KCMs).
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Phenomenology of KCMs

@ Spin models on a lattice / lattice gases, designed to mimick steric effects
in amorphous materials:
o s; =1, nj = 1: "mobile” particle - region of low density - fast
dynamics
o s, = —1, nj = 0: "blocked” particle - region of high density - slow
dynamics

@ Specific dynamical rules:

Fredrickson-Andersen (FA) model in 1 dimension: a spin can flip only if at least
one of its nearest neighbours is in the mobile state.

1Tl=1]1| is forbidden.

Mobile/blocked particles self-organize in space — glassy, slow relaxation
and dynamical correlation length &.

How to classify time-trajectories and their activity?

(F. Ritort, P. Sollich, Adv. Phys 52, 219 (2003).)
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Relevant order parameters for space-time trajectories

@ Ruelle formalism: from deterministic dynamical systems to continous-time
Markov dynamics

@ Observable: Activity K(t): number of flips between 0 and t, given a
history Co — G — .. — C;.

@ Master equation: 22(C,t) =3, W(C' — C)P(C',t) — r(C)P(C,t),
where r(C) = >0 W(C — )

@ Introduce s (analog of a temperature), conjugated to K:

@ P(C,s,t) =3, e *KP(C,K,t) — new evolution equation

@ Generating function of K: Zx(s,t) = > P(C,s,t) =< e >.
For t — 00, Zk(s,t) ~ et¥x(),

— 1k (s) is the large deviation function for the activity K.
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Relevant order parameters for space-time trajectories

@ Average activity: %t(”) = — ﬁ k(s).
t—oo

@ Analogy with the canonical ensemble:

o space of configurations, fixed 3: Z(8) = > e PH ~ =N N — 0.

@ space of trajectories, fixed s:
Zk(s,t) = S c xe FP(C,K,t) ~ e )t — oo,

o fx(s) = —k(s): free energy for trajectories
° %ﬁst) mean activity/chaoticity.
Active phase: < K > (s,t)/(Nt) > 0: s <O0.
Inactive phase: < K > (s, t)/(Nt) =0: s > 0.
>
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Results: Mean-Field FA

o ‘/V,(O—)]_):k/%, VV,(]_—)O):k"NI’ ":Z,’”i-

@ The result is a variational principle for ¥k (s), involving a
Landau-Ginzburg free energy Fx(p,s) (p: density of mobile spins):

~fic(s) = —xvk(s) = mpin Fk(p,s), with
Fi(p,s) = —2pe™*(p(L — p)kk')"/? + K'p(1 — p) + kp

@ Minima of Fi(p, s) at fixed s:

@ s > 0: inactive phase, px(s) =0, ¢¥k(s)/N = 0.

o s = 0: coexistence px(0) = 0 and px(0) = p*, ¥k (0) = 0, — first order
phase transition.

o s < 0: active phase, pk(s) > 0, ¥«(s)/N > 0.
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Results: Mean-Field FA

@ Fx(p,s) for different values of s:

free energy (FA case)

0.2 04 0.6 0.8 1
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Results: Mean-Field unconstrained model

@ One removes the constraints: W;(0 — 1) = k/, Wi(1 — 0) = k, for all
o Fi(p,s) = —2e*(p(1 — p)kk')/? + K'(L — p) + kp

@ — No phase transition

free energy (unconstrained case)
°

o
o
N
o
kS
o
=Y
o
@
-
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Results in finite dimensions

@ Numerical solution using the algorithm of Giardina, Kurchan, Peliti for
large deviation functions. (c. Giardina, J. Kurchan, L. Peliti, Phys. Rev. Lett. 96, 120603 (2006)).

@ First-order phase transition for the FA model in 1d.
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Results in finite dimensions

@ pi(s) for the FA model in 1d. True also for particle systems!

Pi(8)

025 T M“h
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T Dl
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@ “Dynamic first-order transition in kinetically constrained models of
glasses”, J.P. Garrahan, R.L. Jack, V. Lecomte, E. Pitard, K. van
Duijvendijk, F. van Wijland, Phys. Rev. Lett. 98, 195702 (2007).

@ “First-order dynamical phase transition in models of glasses: an approach
based on ensembles of histories”, J.P. Garrahan, R.L. Jack, V. Lecomte,

E. Pitard, K. van Duijvendijk, F. van Wijland, J. Phys. A 42 (2009).
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Driven KCMs, heterogeneities and large deviations

2d ASEP with kinetic constraints, a model of particles at fixed density p on a
2d square lattice (model introduced by M. Sellitto, 2008).

@ Dynamical constraint: A particle can hop to an empty neighbouring site if
it has at most 2 occupied neighbouring sites, before and after the move

@ Asymmetric Exclusion Process: Driving field E in the horizontal direction.
For low densities p,

ozef ‘ ‘ e coharaea 9 the current J is an
e T
0.20] s “._ — 1dTASEP - . N
o wek / o o P | increasing function
o s /S \ of E
L orf fls » /
S eoooaovorstoes] = / 1 o Jis well
v ] !
ool # o Ty approximated by a
0.04fy, ® p=02 p=06 .
olt e T : mean-field
T I = . o 0z 04 05 08 1.0
R R 2 0d s 08 argument:
—E
J= (1—3e2 )p(1—
p)(1—p7)

Estelle Pitard Large deviations and heterogeneities in driven or non-driven kinetically constra



Driven KCMs, current heterogeneities and large deviations

Driven KCMs, current heterogeneities and large deviations

The dynamical constraints induce a new transport regime.

@ E < Ep.x: shear-thinning, the
current J grows with E

15 T
—08 ——
N Plom
; p=084 x .
f o= B0 For large densities, p > pc ~ 0.78,

@ E > E,.x: shear-thickening, J
decreases with E
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Driven KCMs, current heterogeneities and large deviations

Microscopic analysis: transient shear-banding at large fields, localization of the
current.
— very different density profiles for small and large driving fields.
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K (s) /K (0)

Uy (9)

Driven KCMs, current heterogeneities and large deviations

Large deviation functions for the activity K(t) and the integrated current Q(t):
Q(t) = [, J(t)dt'.
e For K, the first-order transition persists like for unforced KCMs.

e For Q, there is a first-order transition only at large fields (coexistence of
histories with large current and histories with no current). Absent for ASEP
without constraints!
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Large deviation functions for the integrated current Q(t):
Fluctuation theorem P(Q)/P(—Q) = e? implies ¢q(s) = ¥o(E — s).
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Dynamical blocking walls -1

Dense domain walls play the role of kinetic traps at large fields.

@ At small E, voids are random.

@ At large E, voids organize into domain walls transverse to the field.
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Dynamical blocking walls -2

L=100

w, : longitudinal
8.0 w,:transversal

wall sizes
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Dynamical blocking walls -3
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Phenomenological fit of J(E) on the
basis of the effective blocking effect of
the walls:

JE)~AQl-e H)l-a<w>).

e “Large deviations and heterogeneities in a driven kinetically constrained
model”, F. Turci, E. Pitard, Europhys. Lett. 94, 10003 (2011).
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Size effects -1
H: vertical confinement length.
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Size effects -2
&(p, E): dynamical correlation length.
- For E =0,
eEEg STEEL TieEsd &(p) ox exp(exp(C/(1 — p))). (Toninel, Biro,

Fisher, 2004.)

— Determination of £(p, E): dynamical
correlation length in the presence of an
external field E.

F. Turci, M. Sellitto, E. Pitard, in
preparation
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Conclusions

@ Large deviation functions of generating functions in trajectories space
provide useful order parameters that probe active/inactive phases or large
current/small current phases according to the observable. s plays the role
of a "chaoticity” temperature.

@ KCMs show a first-order phase transition at s = 0. In a real system, there
is coexistence between 2 different dynamical phases.

@ How to probe these two phases experimentally?

@ Link between transport properties, microscopic lengths between defects
and dynamical correlation lengths?

@ Dynamic transitions and phase coexistence in realistic (Lennard-Jones)
glasses — new perspectives

L. Hedges, R.L. Jack, J-P. Garrahan, D.C. Chandler, Science, 323, 1309
(2009).
E. Pitard, V. Lecomte, F. van Wijland, Europhys. Lett. 96 56002 (2011).
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Dynamic transitions in realistic glasses

@ Cloning algorithm for a
generalized activity, LJ mixture
K(t) = [y Verr(t')dt" where
Veff =3, [2F7 + 3VF] winv.

Lecomte, F. van Wijland.

@ Prob to stay in the same
configuration between t and
t + dt ~ exp(— [ Verdt)

Two phases:

Small K: energy basins, "inactive”

Large K: local maxima, "active”

@ Link between dynamic phases and
S S energy landscape?
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Dynamic transition in realistic glasses

Ao /Nl 0% AL
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@ Transition path-sampling in the
s-ensemble.

(Hedges, Jack, Garrahan, Chandler, Science (2009)).
@ Activity:
K(t) = At 3ok S0 [R (e + At) — F())?

At: time to move a distance ~ molecular
diameter.
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Dynamic transition in realistic glasses

@ Experimental challenge: measure
P(K) (for KCMs: Jack, Garrahan, Chandler, JCP

(2006)).
=
4L 4 . .
=10 @ Particle tracking?
-
w0t o @ Importance of finite-size effects
n ‘ @ Experimental parameter for s?
e 4 3 2 a4 0 1
X
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Results in finite dimensions

@ Numerical solution using the algorithm of Giardina, Kurchan, Peliti
(discrete time Markov processes) for large deviation functions.

o P(C,t)=> W(C— CHYP(C',t—1)
@ solution at fixed Cp:

P(C.t)= Y W(G—G)...W(C1— C)

CryeosCot

@ One looks for the large deviation function of an additive observable
A=a(G— G)+ - +a(CG-1— C).
< e A > eteld) oo
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Results in finite dimensions

@ Defining W, (s)(C — C') = W(C — C")e ! (€=

Z H Wa C — CH»l)

@ but W,(s) is not a stochastic matrix.
@ Introducing Y (C) = > Wa(s)(C — C’), and

W/ (s)(C— C') = W W/,(s) is stochastic.

S T WAS)G — G Y(C)

Gi,...,Ce i=0
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Results in finite dimensions

@ One performs the dynamics of N copies (N > 1) of the system:

@ each copy in configuration C is cloned with probability Y(C)
o stochastic evolution with W/, (s)(C — C’)
o the number of copies is sent back uniformly to N, with ratio X;

9 Yu(s) = —tlirglo% In(Xy...Xe)

@ (C. Giardina, J. Kurchan, L. Peliti, Phys. Rev. Lett. 96, 120603 (2006)).
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