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Outline

Introduction: what is a glassy system?

Dynamic transition in Kinetically Constrained Models- large deviations

Phenomenology of kinetically constrained models (KCMs)
Relevant order parameters for space-time trajectories: activity K
We will show that in the stationary state, there is a coexistence
between active and inactive trajectories.
These trajectories can be probed by tuning an external parameter s,
or ”chaoticity temperature”.
Results: mean-field/ finite dimensions

Driven KCMs, current heterogeneities and large deviations

A new dynamic phase transition for the integrated current Q
Fluctuations: large deviation function for the current
Link with microscopic spatial heterogeneities
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Introduction

What is a glassy phase?

No static signature difference between fluid and glass

No thermodynamical transition, no Tc

How can one realize that a system is in a glassy state?

-either drive it out-of-equilibrium or investigate its relaxation
properties
→ dramatic increase in viscosity, ageing.

Importance of the dynamics and of spatio-temporal heterogeneitites
(Fredrickson-Andersen 1984) → Fluctuations!

Models with

long-lived correlated spatial structures
slow, intermittent dynamics.

Our choice: Kinetically Constrained Models (KCMs).
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Phenomenology of KCMs

Spin models on a lattice / lattice gases, designed to mimick steric effects
in amorphous materials:

si = 1, ni = 1: ”mobile” particle - region of low density - fast
dynamics
si = −1, ni = 0: ”blocked” particle - region of high density - slow
dynamics

Specific dynamical rules:

Fredrickson-Andersen (FA) model in 1 dimension: a spin can flip only if at least
one of its nearest neighbours is in the mobile state.

↓↑↓⇋↓↓↓ is forbidden.

Mobile/blocked particles self-organize in space → glassy, slow relaxation
and dynamical correlation length ξ.

How to classify time-trajectories and their activity?

(F. Ritort, P. Sollich, Adv. Phys 52, 219 (2003).)
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Relevant order parameters for space-time trajectories

Ruelle formalism: from deterministic dynamical systems to continous-time
Markov dynamics

Observable: Activity K (t): number of flips between 0 and t, given a
history C0 → C1 → .. → Ct .

Master equation: ∂P
∂t

(C , t) =
P

C ′ W (C ′ → C)P(C ′, t) − r(C)P(C , t),
where r(C) =

P

C ′ 6=C W (C → C ′)

Introduce s (analog of a temperature), conjugated to K:

P̂(C , s, t) =
P

K e−sKP(C , K , t) → new evolution equation

Generating function of K: ZK (s, t) =
P

C P̂(C , s, t) =< e−sK >.

For t → ∞, ZK (s, t) ≃ etψK (s).

→ ψK (s) is the large deviation function for the activity K .
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Relevant order parameters for space-time trajectories

Average activity: <K>(s,t)
Nt

=
t→∞

− 1
N

ψ′
K (s).

Analogy with the canonical ensemble:

space of configurations, fixed β: Z(β) =
P

C e−βH ≃ e−Nf (β),N → ∞.

space of trajectories, fixed s:
ZK (s, t) =

P

C ,K e−sKP(C , K , t) ≃ e−tfK (s),t → ∞.

fK (s) = −ψK (s): free energy for trajectories

<K>(s,t)
Nt

: mean activity/chaoticity.

Active phase: < K > (s, t)/(Nt) > 0: s < 0.
Inactive phase: < K > (s, t)/(Nt) = 0: s > 0.
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Results: Mean-Field FA

Wi (0 → 1) = k ′ n
N

, Wi (1 → 0) = k n−1
N

, n =
P

i ni .

The result is a variational principle for ψK (s), involving a
Landau-Ginzburg free energy FK (ρ, s) (ρ: density of mobile spins):

1
N

fK (s) = − 1
N

ψK (s) = min
ρ

FK (ρ, s), with

FK (ρ, s) = −2ρe−s(ρ(1 − ρ)kk ′)1/2 + k ′ρ(1 − ρ) + kρ2

Minima of FK (ρ, s) at fixed s:

s > 0: inactive phase, ρK (s) = 0, ψK (s)/N = 0.

s = 0: coexistence ρK (0) = 0 and ρK (0) = ρ∗, ψK (0) = 0, → first order
phase transition.

s < 0: active phase, ρK (s) > 0, ψK (s)/N > 0.
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Results: Mean-Field FA

FK (ρ, s) for different values of s:
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Results: Mean-Field unconstrained model

One removes the constraints: Wi (0 → 1) = k ′, Wi (1 → 0) = k, for all i

FK (ρ, s) = −2e−s(ρ(1 − ρ)kk ′)1/2 + k ′(1 − ρ) + kρ

→ No phase transition
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Results in finite dimensions

Numerical solution using the algorithm of Giardina, Kurchan, Peliti for
large deviation functions. (C. Giardinà, J. Kurchan, L. Peliti, Phys. Rev. Lett. 96, 120603 (2006)).

First-order phase transition for the FA model in 1d.
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Results in finite dimensions

ρK (s) for the FA model in 1d. True also for particle systems!
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“Dynamic first-order transition in kinetically constrained models of
glasses”, J.P. Garrahan, R.L. Jack, V. Lecomte, E. Pitard, K. van
Duijvendijk, F. van Wijland, Phys. Rev. Lett. 98, 195702 (2007).

“First-order dynamical phase transition in models of glasses: an approach
based on ensembles of histories”, J.P. Garrahan, R.L. Jack, V. Lecomte,
E. Pitard, K. van Duijvendijk, F. van Wijland, J. Phys. A 42 (2009).
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Driven KCMs, heterogeneities and large deviations

2d ASEP with kinetic constraints, a model of particles at fixed density ρ on a
2d square lattice (model introduced by M. Sellitto, 2008).

Dynamical constraint: A particle can hop to an empty neighbouring site if
it has at most 2 occupied neighbouring sites, before and after the move

Asymmetric Exclusion Process: Driving field ~E in the horizontal direction.

For low densities ρ,

the current J is an
increasing function
of E

J is well
approximated by a
mean-field
argument:
J = (1−e−E )ρ(1−
ρ)(1 − ρ3)2

Estelle Pitard Large deviations and heterogeneities in driven or non-driven kinetically constrained



Dynamic transition in KCMs- large deviations
Driven KCMs, current heterogeneities and large deviations

Driven KCMs, current heterogeneities and large deviations

The dynamical constraints induce a new transport regime.

For large densities, ρ > ρc ≃ 0.78,

E < Emax : shear-thinning, the
current J grows with E

E > Emax : shear-thickening, J
decreases with E
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Driven KCMs, current heterogeneities and large deviations

Microscopic analysis: transient shear-banding at large fields, localization of the
current.
→ very different density profiles for small and large driving fields.
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Large deviation functions for the activity K (t) and the integrated current Q(t):
Q(t) =

R t

0
J(t′)dt′.

• For K , the first-order transition persists like for unforced KCMs.
• For Q, there is a first-order transition only at large fields (coexistence of
histories with large current and histories with no current). Absent for ASEP
without constraints!
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Large deviation functions for the integrated current Q(t):
Fluctuation theorem P(Q)/P(−Q) = eQ implies ψQ(s) = ψQ(E − s).
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Dynamical blocking walls -1

Dense domain walls play the role of kinetic traps at large fields.

At small E , voids are random.

At large E , voids organize into domain walls transverse to the field.
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Dynamical blocking walls -2
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Dynamical blocking walls -3

Phenomenological fit of J(E) on the
basis of the effective blocking effect of
the walls:
J(E) ≃ A(1 − e−E )(1 − α < w >).

• “Large deviations and heterogeneities in a driven kinetically constrained
model”, F. Turci, E. Pitard, Europhys. Lett. 94, 10003 (2011).
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Size effects -1
H: vertical confinement length.
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Size effects -2
ξ(ρ, E): dynamical correlation length.

For E = 0,
ξ(ρ) ∝ exp(exp(C/(1 − ρ))). (Toninelli, Biroli,

Fisher, 2004.)

→ Determination of ξ(ρ, E): dynamical
correlation length in the presence of an
external field E .
F. Turci, M. Sellitto, E. Pitard, in
preparation
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Conclusions

Large deviation functions of generating functions in trajectories space
provide useful order parameters that probe active/inactive phases or large
current/small current phases according to the observable. s plays the role
of a ”chaoticity” temperature.

KCMs show a first-order phase transition at s = 0. In a real system, there
is coexistence between 2 different dynamical phases.

How to probe these two phases experimentally?

Link between transport properties, microscopic lengths between defects
and dynamical correlation lengths?

Dynamic transitions and phase coexistence in realistic (Lennard-Jones)
glasses → new perspectives

L. Hedges, R.L. Jack, J-P. Garrahan, D.C. Chandler, Science, 323, 1309
(2009).

E. Pitard, V. Lecomte, F. van Wijland, Europhys. Lett. 96 56002 (2011).
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Dynamic transitions in realistic glasses

Cloning algorithm for a
generalized activity, LJ mixture
K (t) =

R t

0
Veff (t′)dt′ where

Veff =
P

i

ˆ

β
4
F 2

i + 1
2
∇Fi

˜

with V.

Lecomte, F. van Wijland.

-0.0008 -0.0006 -0.0004 -0.0002 0 0.0002 0.0004 0.0006 0.0008
s

-1000

-800

-600

-400

-200

0

<
V

ef
f(s

)>
/N

, T
=

0.
8

N=45
N=82
N=155
N=250
N=393

Prob to stay in the same
configuration between t and
t + dt ∼ exp(−βVeff dt)

Two phases:

Small K : energy basins, ”inactive”

Large K : local maxima, ”active”

Link between dynamic phases and
energy landscape?
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Dynamic transition in realistic glasses

Transition path-sampling in the
s-ensemble.

(Hedges, Jack, Garrahan, Chandler, Science (2009)).

Activity:

K (t) = ∆t
Ptobs

t=0

PN

i=1[~ri (t + ∆t) −~ri (t)]
2

∆t: time to move a distance ∼ molecular
diameter.
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Dynamic transition in realistic glasses

Experimental challenge: measure
P(K ). (for KCMs: Jack, Garrahan, Chandler, JCP

(2006)).

Particle tracking?

Importance of finite-size effects

Experimental parameter for s?
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Results in finite dimensions

Numerical solution using the algorithm of Giardina, Kurchan, Peliti
(discrete time Markov processes) for large deviation functions.

P(C , t) =
P

C ′ W (C → C ′)P(C ′, t − 1)

solution at fixed C0:

P(C , t) =
X

C1,...,Ct−1

W (C0 → C1) . . . W (Ct−1 → C)

One looks for the large deviation function of an additive observable
A = α(C0 → C1) + · · · + α(Ct−1 → Ct).

< e−sA >≃ etψα(s), t → ∞
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Results in finite dimensions

Defining Wα(s)(C → C ′) = W (C → C ′)e−sα(C→C ′),

< e−sA >=
X

C1,...,Ct

t−1
Y

i=0

Wα(s)(Ci → Ci+1)

but Wα(s) is not a stochastic matrix.

Introducing Y (C) =
P

C ′ Wα(s)(C → C ′), and

W ′
α(s)(C → C ′) = Wα(s)(C→C ′)

Y (C)
, W ′

α(s) is stochastic.

< e−sA >=
X

C1,...,Ct

t−1
Y

i=0

W ′
α(s)(Ci → Ci+1)Y (Ci )
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Results in finite dimensions

One performs the dynamics of N copies (N ≫ 1) of the system:

each copy in configuration C is cloned with probability Y (C)
stochastic evolution with W ′

α(s)(C → C ′)
the number of copies is sent back uniformly to N, with ratio Xt

ψα(s) = − lim
t→∞

1
t
ln(X1 . . . Xt)

(C. Giardinà, J. Kurchan, L. Peliti, Phys. Rev. Lett. 96, 120603 (2006)).
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