Fluctuations out of Equilibrium: Symmetries and Phase Transitions

Carlos Pérez-Espigares

Institute Carlos I for Theoretical and Computational Physics, University of Granada, Spain

Lyon, June 2012

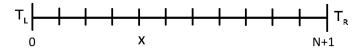
In collaboration with: P. I. Hurtado, P. L. Garrido and J. del Pozo.

- Fluctuations arise universally in nature, playing a dominant role in many fields
- ► Encode fundamental information → Particularly important out of equilibrium
- Current statistics → Main objective of nonequilibrium statistical physics
- We focus on the study of current statistics in the 2D-KMP model

The KMP model in one dimension

C. kipnis, C. Marchioro and E. Presutti, Journal of Statistical Physics, 27 65 (1982)

 $e_x \in \Re_+$



 e_x is interpreted as the energy of an oscillator at site x

- ► Stochastic dynamics: $e'_x = p(e_x + e_{x+1})$ $e'_{x+1} = (1 p)(e_x + e_{x+1})$
- If x=0 or x=N+1 we create a random $e_{0(N+1)}$ with the Gibbs distribution: $\beta_{L(R)}e^{-\beta_{L(R)}e_{0(N+1)}}$ with $\beta_{L(R)}=T_{L(R)}^{-1}$
- ▶ They proved that the system follows the Fourier's law with $\kappa[T] = \frac{1}{2}$

P.I. Hurtado and P.L. Garrido studied the Current Large Deviation of the 1D-KMP model:

$$P(q_{\tau}, \tau; T_L, T_R) \simeq \exp[\tau LG(q; T_L, T_R)] \qquad q_{\tau} = \frac{1}{\tau} \int_0^{\tau} dt \int_0^1 j(x, t) dx$$
 $\tau \to \infty$

The most probable value is the one for the stationary state:

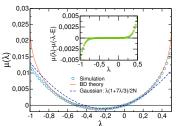
$$G(\langle q \rangle; T_L, T_R) = 0; \quad G'(\langle q \rangle; T_L, T_R) = 0$$

 They confirmed numerically the theoretical prediction (Additivity Principle) T. Bodineau and B. Derrida, PRL 92 180601 (2004)

$$G(q; T_L, T_R) = -\min_{T(x)} \left[\int_0^1 \frac{(q + \kappa[T(x)] \frac{dT}{dx})^2}{2\sigma[T(x)]} dx \right] \quad \text{KMP: } \kappa = \frac{1}{2}, \ \ \sigma[T] = T^2$$

Numerical results for the 1D-KMP model:

P.I. Hurtado and P.L. Garrido, PRL 102 250601 (2009)

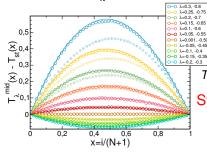


$$\mu(\lambda) = \max_{q} [G(q; T_L, T_R) + \lambda q]$$
 $-\infty < q < \infty \Leftrightarrow -\frac{1}{T_R} < \lambda < \frac{1}{T_L}$
 $T_L = 2$ $T_R = 1$

The Gallavotti-Cohen theorem holds:

$$G(q; T_L, T_R) - G(-q; T_L, T_R) = q\left(\frac{1}{T_R} - \frac{1}{T_L}\right)$$

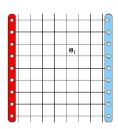
$$\mu(\lambda) = \mu\left(-\lambda - \frac{1}{T_R} + \frac{1}{T_L}\right)$$

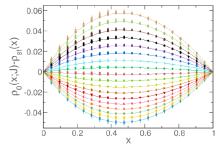


$$T(x;q) = T(x;-q) \Leftrightarrow T_{\lambda}(x) = T_{-\lambda-1/T_R+1/T_L}$$

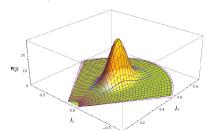
Symmetry due to the Gallavotti-Cohen Fluctuation Theorem

Temperature Profiles in the 2D-KMP model





$$\mathbf{J} = \frac{1}{\tau} \int_0^{\tau} dt \int_{\Lambda} d\mathbf{r} \mathbf{j}(\mathbf{r}, t)$$



Numerical evidence for the symmetry:

$$T(\mathbf{r}; \mathbf{J}) = T(\mathbf{r}; |\mathbf{J}|)$$

The Hydrodynamic Fluctuation Theory

L. Bertini, A. De Sole, D. Gabrielli, G. Jona-Lasisino, C. Landim

We assume that our system is described by a Langevin type equation:

$$\partial_t \rho(\mathbf{r},t) = -\nabla \cdot \mathbf{j}(\mathbf{r},t)$$
 with $\mathbf{j}(\mathbf{r},t) = \mathbf{Q}[\rho] + \boldsymbol{\xi}(\mathbf{r},t)$ where $\mathbf{r} \in \Lambda = [0,1]^d$, $\boldsymbol{\xi}$ is a gaussian white noise and $\mathbf{Q}[\rho] = -D[\rho]\nabla \rho$

► The probability to see a given space-time averaged value of the current is given by $P(\mathbf{J}) \simeq \exp[\tau L^d G(\mathbf{J})]$

$$G(\mathbf{J}) = -\frac{1}{\tau} \min_{\substack{\rho(\mathbf{r},t) \\ \mathbf{j}(\mathbf{r},t)}} \int_0^{\tau} dt \int_{\Lambda} d\mathbf{r} \frac{\left(\mathbf{j}(\mathbf{r},t) - \mathbf{Q}[\rho(\mathbf{r},t)]\right)^2}{2\sigma[\rho(\mathbf{r},t)]}$$

The minimization should be done with the conditions

$$\rho(\mathbf{r},t) = \bar{\rho}(\mathbf{r};\mathbf{J}) \qquad \mathbf{j}(\mathbf{r},t) = \mathbf{J}$$

Under all those conditions we find that

the fields that minimize the functional only depends on the modulus of the current:

$$ar{
ho}(\mathbf{r};\mathbf{J})=ar{
ho}(\mathbf{r};|\mathbf{J}|)$$

The Isometric Fluctuation Relation (IFR)

The invariance of the most probable profile under current rotations implies $(\tau \to \infty)$:

$$oxed{rac{P_{ au}(\mathbf{J})}{P_{ au}(S\mathbf{J})}\simeq \exp\left[au\epsilon\cdot(\mathbf{J}-S\mathbf{J})
ight]}$$

for any rotation S.

 ϵ only depends on boundary conditions. In particular $|\epsilon|$ =0 for systems in equilibrium.

Some Consequences of the IFR:

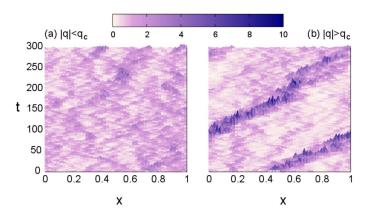
▶ If S is a rotation π the Gallavotti-Cohen FT holds:

$$rac{P(\mathbf{J}_{ au}=J)}{P(S\mathbf{J}_{ au}=-J)}\simeq ext{exp}[2 au\epsilon J]$$

 The IFR implies relations between the cumulants of the current distribution

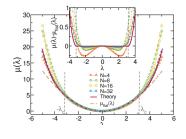
Dynamical Phase Transition

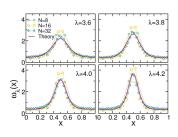
- The HFT predicts in general a time-dependent optimal path in phase space responsible of given current fluctuation (Bertini et al., Bodineau & Derrida)
- Additivity conjecture: optimal path is time-independent in a broad regime
- This scenario eventually breaks down for large fluctuations via a dynamic phase transition at the fluctuating level
- Hurtado and Garrido observed this for current fluctuations in 1D KMP energy-diffusion model on a ring

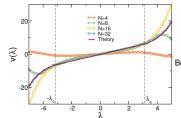


- ▶ $|q| < q_c \rightarrow$ sum of weakly-correlated local events \rightarrow Gaussian stat.
- ▶ $|q| > q_c \rightarrow$ coherent traveling wave + energy localization \rightarrow non-Gaussian
- Striking phenomenon: isolated equilibrium system with no external fields

Again they studied the current large deviation:







- Agreement with the HFT is very good for large enough N at the fluctuation level
- The phase transition seems continuous as conjectured by Bodineau and Derrida, excluding the possibility of a first-order scenario

What happens in the 2D-KMP? (preliminary work)

Again we have

$$G(\mathbf{J}) = -\frac{1}{\tau} \min_{\substack{\rho(\mathbf{r},t) \\ \mathbf{j}(\mathbf{r},t)}} \int_0^{\tau} dt \int_{\Lambda} d\mathbf{r} \frac{\left(\mathbf{j}(\mathbf{r},t) - \mathbf{Q}[\rho(\mathbf{r},t)]\right)^2}{2\sigma[\rho(\mathbf{r},t)]}$$

with
$$\mathbf{J} = \frac{1}{\tau} \int_0^{\tau} dt \int_{\Lambda} \mathbf{j}(\mathbf{r}, t) d\mathbf{r}, \quad \frac{\partial \rho(\mathbf{r}, t)}{\partial t} = -\nabla \cdot \mathbf{j}(\mathbf{r}, t), \quad \int_{\Lambda} \rho(\mathbf{r}, t) d\mathbf{r} = \rho_0$$

We propose a time dependent solution $\rho(\mathbf{r}, t) = \omega(\mathbf{r} - \mathbf{v}t)$

$$G(\mathbf{J}) = -\min_{\mathbf{v},\omega} \int_{\Lambda} d\mathbf{r} \frac{(\mathbf{v}\omega(\mathbf{r}) + \mathbf{J} - \mathbf{v}\rho_0 + D[\omega]\nabla\omega(\mathbf{r}))^2}{2\sigma[\omega]}$$

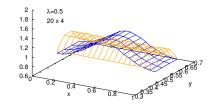
$$\Rightarrow \boxed{(\nabla\omega)^2 = \frac{1}{D[\omega]^2} \left[(\mathbf{J} - \mathbf{v}\rho_0 + \mathbf{v}\omega(\mathbf{r}))^2 - C_2\omega 2\sigma[\omega] - C_12\sigma[\omega] \right]}$$

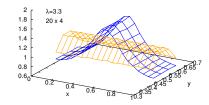
We have many possible solutions... Which one do we study?

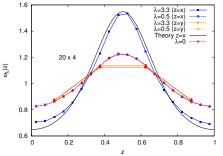
Let's see simulations!

Profile averages around (x_{cm},0.5) Profile averages around (0.5,y_{cm})

Profile averages around (x_{cm},0.5) Profile averages around (0.5,y_{cm})



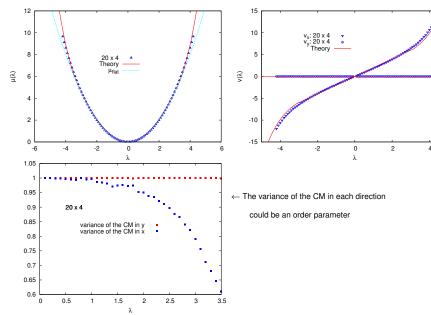




- The profile only changes in the x-direction increasing $\boldsymbol{\lambda}$
- We study the wave solution $\omega(\mathbf{r}) = \omega(x)$
- The profiles are the same of the 1D system
- The velocities too

$$\mu_{2D}(\lambda) = \frac{\mu_{1D}(|\lambda|)}{\alpha}$$

Legendre transform of the large deviation and velocity of the wave



Conclusions:

- For a moderate aspect ratio we have a dynamical phase transition
- It is a travelling wave
- Suggest that a traveling wave is in fact the most favorable time-dependent profile in the supercritical regime
- Rare events call in general for coherent, self-organized patterns in order to be sustained
- ▶ What happens for an aspect ratio $\alpha = 1$? Are other solutions more probable?

Thank you!