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Driven, non-equilibrium systems

e systems with currents

e do not obey detailed balance

P(C) the probability to be at a microscopic configuration C at time t

GP(C) _ s " _ — ("
” _ZW(C C)P(C") ZW(C C)P(C)

W(C'— C)P(C") = W(C — C")P(C)



Typical simple examples

heat current T,
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charge current

What are the steady state properties of such systems?

It is well known that such systems exhibit long-range correlations
when the dynamics involves some conserved parameter.



Outline

Will discuss a few examples where long-range correlations show up
and consider some consequences

e Example I: Effect of a local drive on the steady state of a system

e Example II: Linear drive in two dimensions: spontaneous symmetry
breaking



e Example | :Local drive perturbation

T. Sadhu, S. Majumdar, DM, Phys. Rev. E 84, 051136 (2011)



Local perturbation in equilibrium

Particles diffusing (with exclusion) on a grid

|
l occupation number t; = 0,1
®
e —
N particles
) | V sites

Prob. of finding a particle at site k p(k) = 1%



Add a local potential u at site O

N particles —> 1
V sites 0 < 1
O

]

(Vv —1)P(k)+P(0) =N (k #0)
_N-PO N1
PU) === =y +0)

The density changes only locally.



How does a local drive affect the steady-state of a system?




A single driving bond
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Main results:

® In d = 2 dimensions both the density and the local current
decay algebraically with the distance from the driven bond.

® The same is true for local arrangements of driven bond.
The power law of the decay depends on the specific
configuration.

® In d=2 dimensions a close correspondence to electrostatics
is found, with analogous variables to electric and magnetic
fields E, H.



Density profile (with exclusion)
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The density profile  ¢(7)~ { 1/r in any other direction



Non-interacting particles

¢ Time evolution of density:

0:p () = V2(#,t) + €¢(0,)[6:5 — O]
Ve=¢p(m+1,n)+p(m—-1,n)+d(mn+1)+ d(mn—1) —4¢(m,n)

The steady state equation

72¢(#) = —ed(0)[5;5 — 67]

particle density — electrostatic potential of an electric dipole




V2 = —€p(0)[675 — S72]

The dipole strength has to be determined self consistently.

Green’s function VZG(F, 7_"’0) = —5F,f’o

solution o) =p+ Ec,b(ﬁ))[G(?, 6) —G(7,ey1)]

-
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Unlike electrostatic configuration here the strength of
the dipole should be determined self consistently.
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Green’s function of the discrete Laplace equation
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(@) = p + e¢(0)[G(7,0) — G(F, &y)]



determining ¢(6)

$(P) = p +ep(0)[G(7,0) - G(7,é1)]

1

To find ¢(0) one uses the values G(6, 6) =0, G(6, é’l) = —




at large r

4 Y > - - - P
¢ =p+ep(0)[G(7,0) — G(7, )] ¢(0) G
)
9 ep(0)é,7 1
density: o) =p— o 12 + O(r_z)
) ) = ep(0) 1 . 2(6,7)F oL
current: jr) = ST €4 > + (r3




Multiple driven bonds
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e=1-¢

d() =p+ep@ICEFET) — G T +e)]+ ep(R)CT, ) — G, T, +e)] + -

Using the Green’s function one can solve for ¢(71), ¢ (1,)...

by solving the set of linear equations for 7 = iy, iy, -



Two oppositely directed driven bonds — quadrupole field

1-¢ 1-¢
e =
1 1
The steady state equation: V2¢(7) = —eqb(O)[ — 07, —07_¢,]

1
+ 0(r—4)

() = egb(O) [ elr




d # 2 dimensions
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Here the steady state measure is not known however one can

The model of local drive with exclusion

determine the behavior of the density.

0,7, t) = V27, t) + E(T(O){l — T(el)})[

0.0 \T—/ (L.O)
T = 0,1 is the occupation variable
, e(r(0){(1 —1(é)}) é er
b =p - - 0y

— 6757



E(T(O){l —1(e)} e elr

2T r2

() =p— ( 2)

The density profile is that of the dipole potential with a dipole
strength which can only be computed numerically.



Simulation results

Simulation on a 200 X 200 lattice with p = 0.6

For the non-interacting case strength of the dipole was
measured separately .
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Magnetic field analog

fori — jprocess H = Infe; /]

forthe i,jbond H =In 2

eji




Zero-charge configuration

The density is flat however there are currents



Zero magnetic field configuration

no currents but inhomogeneous density (equilibrium)



In general

-

e non-zero electric field - inhomogeneous density

® non-zero magnetic field — currents

e zero magnetic field —» equilibrium configuration




® Example Il: a two dimensional model with a driven line

T. Sadhu, Z. Shapira, DM



Two dimensional lattice gas (Ising) model (equilibrium)

H:_]ZSLS] Sl:‘l'l
<ij>
+ particle - vacancy

particle exchange (Kawasaki) dynamics

+-— -+ with rate min(1, e #2H)



atT <T,




2d Ising model with a row of weak bonds (equilibrium)

Ji — \//\v%—

J1 <]

The weak-bonds row localizes the interface at any temperature T < T,
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Interface energy at low temperature:

L

H=J) Ihi—hial = —h)ZL:c?(hi)
=1

=1

P(h) - the probability of finding the interface at height h

P(h+1)+P(h—1)—2P(h) =—AP(h) h+0
P(L) + P(1) —2P(0) = (—2—€)P(0)

€ = _(eﬂ(l—h) — 1)eﬁ (< 0)

1d Quantum mechanical particle (discrete space) with a
local attractive potential. The wave function is localized.



Schematic magnetization profile
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The magnetization profile is antisymmetric with respect to the zero
line withm(y =0) =0



Consider now a line of driven bonds




+- > -+ withrate min(1,e~PAH+BE )

-+ > + - with rate min(1, e PAH-BE)

H=-] Z 515



Main results

® The driven line attracts the interface
® The interface width is finite (localized)
® A spontaneous symmetry breaking takes place

by which the magnetization of the driven line
is non-zero and the magnetization profile is not
antisymmetric, (mesoscopic transition).

®  The fluctuation of the interface are not symmetric around
the driven line.

® These results can be demonstrated analytically in certain limit.



Results of numerical studies

The is attracted by the driven line.
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A configuration of the periodic 500X501 lattice at temperature 0.85Tc.



Temporal evolution of the interface position
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Periodic 30X31 lattice at temperature 0.6Tc. Driven lane at y=0,
there are around 15 macro-switches on a 109 MC steps.
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Zoom In
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Mesoscopic switches

Periodic 30X31 lattice at temperature 0.57Tc.



Example of configurations in the two mesoscopic states for a 100X101 with
fixed boundary at T=0.85Tc



Schematic magnetization profiles
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Asymmetric magnetization profile for a periodic
500X501 lattice at temperature T=0.85Tc.






Non-symmetric fluctuations of the interface

A snapshot of the magnetization profile near the two interfaces on a
500X501 square lattice with periodic boundary condition at T=0.85Tc.



Closed boundary conditions

In order to study the mesoscopic switches in more detail
and to establish the existence of spontaneous symmetry breaking
of the driven line we consider the case of closed boundary conditions

++++++++
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Time series of Magnetization of driven lane for a
100X101 lattice at T= 0.6Tc.
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Switching time on a square LX(L+1) lattice with Fixed
boundary at T=0.6Tc.



Averaged magnetization profile in the two states
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Analytical approach

In general one cannot calculate the steady state measure of this system.
However in a certain limit, the steady state distribution (the large
deviation function) of the magnetization of the driven line can be calculated.

® Slow exchange rate between the driven line and the rest of the system
@ Large drivingfield E > |

® | ow temperature

In this limit the probability distribution of mg is P(mg) = e~LU(mo)
where the potential (large deviation function) U(m,) can be computed.



Schematic potential (large deviation function)

P (mo) = e —LU(my)



® Slow exchange between the line and the rest of the system

rw(AH)

+— 5 -+ 1
rw(—AH) TS O(L3)

w(AH) = min(1, e FAH)

In between exchange processes the systems is
composed of 3 sub-systems evolving independently



® FastdriveE » ]

® the coupling J within the lane can be ignored. As a result

the spins on the driven lane become uncorrelated and they are
randomly distributed (TASEP)

® The driven lane applies a boundary field J/m, on the two other
parts

® Due to the slow exchange rate with the bulk, the two bulk

sub-systems reach the equilibrium distribution of an Ising model
with a boundary field Jm,

® | ow temperature limit

® |n this limit the steady state of the bulk sub systems can

be expanded in T and the exchange rate with the driven line can
be computed.



m, — m, +— withrate p(m,)

withrate gq(m,)

~IN NN

mey — my —

q(mo),\ﬁp(mo)

m, performs a random walk with a rate which depends on m,

( 2y pOpCi
F m0=T>= 2 k. ¢
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Calculate p(m,) at low temperature
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contribution to p(m,,): %(1 —my)(1+m,)%e 2Bl e=2b)1

J1 is the exchange rate between the driven line and the adjacent lines



The magnetization of the driven lane m, changes in steps of 2/L

Expression for rate of increase, p(m,)

4 N

1
p(mo) = 5 (1 +mg)(1 —myg)e2FU*D

1
+35[2(1 +mo)(1 - mg)? (e 2P/1 + ¢2h)1imo)

+(1+mp)2(1 —mg)e?P1™o 4 (1 —my)3e?P/1Mo]e=6F] + 0(e~8F))

\ q(m,) = p(—=m,) /

m

m

Inp(k) dk + j Inq (k) dk
0

U(m)=—f

0
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This form of the large deviation function demonstrates
the spontaneous symmetry breaking. It also yield the
exponential flipping time at finite L. (T = 0.6T, ,J; =])

P (mo) = e —LU(my)

<m,>1-—0(e*)



Summary

® Driven systems exhibit long range correlations under
generic conditions.

® Such correlations sometimes lead to long-range order
and spontaneous symmetry breaking which are absent
under equilibrium conditions.

® Simple examples of these phenomena have been presented.
® A limit of slow exchange rate is discussed which enables

the evaluation of some large deviation functions far from
equilibrium.
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Example lll: ABC Model- phase separation in d=1

O O O
A B C
dynamics
q
AB +—=— BA
q
BC «—— CB
q
CA <= AC

g=1 corresponds to equilibrium and the steady state is homogeneous (fully mixed).
question: what is the steady state for q#17?

Evans,Kafri, Koduvely, Mukamel PRL 80, 425 (1998)



Simple argument:

—

A A AB 41— BA
q

BBBB —m BBBB BC 4—_1' CB
q

BAAAA —— AAAAB CA —1> AC

...AACBBBCCAAACBBB

fast rearrangement

...AABBB AAABBB

slow coarsening

...AAAAABBBBB AA...

The model reaches a phase separated steady state



The model exhibits strong phase separation

...AAAAAAAABBBABBBBBB AA...

The probability of a particle to be at a distance
[ on the wrong side of the boundary is q'

The width of the boundary layer is -1/Ing



Special case NA= NB=N

The argument presented before is general, independent of densities.

For the equal densities case the model has detailed balance for arbitrary q.

We will demonstrate that for any microscopic configuration {X}
one can define “energy” E({X}) such that the steady state
distribution is

P({X}) x qE({X}) o« MIEEXD)



...... AB..... — > .....BA..... E — E+1
...... BC - ......CB..... E — E+1
...... CA - ......AC..... E — E+1

With this weight one has:

W (AB — BA)P(...AB...) =W (BA — AB)P(..BA...)
=q =1

P(...BA..)/ P(..AB..) = q



This definition of “energy” is possible only for NA= NB=N

AAAAABBBBBCCCCC —— AAAABBBBBCCCCCA

E — E+Ng-N

Thus such “energy” can be defined only for N,=Ng=N



N=Nz=N

-

The “energy” E may be written as

N-1 N—i
E({x})= E Z (CiBi+k + AiCz'+k + BiAz'+k )_ (N/3)2
i=1 k=1

12 N
(long-range interaction)

Alternatively, in a manifestly translational invariant form:

N N-1 k
E({x})= Zl Z (1 _ ﬁ)(CiBHk + Az'Ci+k + Bz'Az'+k )



E({X})= Z (CiBz'+k + AiCi+k + BiAi+k )_ (N/3)2

E({x})= iNl(l _i) CiBz'+k + Az'Ci+k + BiAz'+k)

_ AB «<—=— BA
@® Local dynamics ;

| | BC «—— CB
@ Long range interaction

CA «—— AC




Summary

® Driven systems exhibit long range correlations under
generic conditions.

@ Such correlations sometimes lead to long-range order
and spontaneous symmetry breaking which are absent
under equilibrium conditions.

® Simple examples of these phenomena have been presented.
® A limit of slow exchange rate is discussed which enables

the evaluation of some large deviation functions far from
equilibrium.



(V-1)P(k)+P(0)=N

N—-P(0) N 1
Pl) =—— =3t 0G)







Driven systems typically exhibit long-range correlations
In their steady states.

\ In equilibrium - no phase separation
(the density is macroscopically homogeneous)

\ In driven systems — phase separation can take place
(“liquid-gas” transition in one dimension)



Traffic flow

Space (road)
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Single-lane traffic model



Fundamental Diagram

Free row\ Jammed flow
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|s there a jamming phase transition?
or is it a broad crossover?
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Variation with temperature. Fixed boundary, 60X61 lattice.



L =60
L =100
L =200
L =500
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Variation with systems size. Fixed boundary, T=0.85Tc.



+ - > -+ withrate min(l,e_ﬁAH-l_ﬁE)

. — —GE
-+ = + - withrate min(1, e “AAH ~BE)



A snapshot of the magnetization profile in the two states




