Diffusion with Stochastic Resetting

Martin R. Evans
SUPA, School of Physics and Astronomy, University of Edinburgh, U.K.

June 10, 2012

Collaborator: Satya N. Majumdar (LPTMS, Paris)

Introduction: Search Problems

Search Problems are ubiquitous in nature and occur in a variety of contexts

- from foraging of animals to target location on DNA
- from internet searches to the mundane task of finding one's misplaced possessions

How does one search for lost keys?

after a while go back to where they should be and start looking again i.e. reset the search

Plan: Diffusion with Stochastic Resetting

Plan

I Recap of diffusion equation, absorbing target, mean first passage time
II Stochastic resetting
III Many searchers

References:

M. R. Evans and S. N. Majumdar, Phys. Rev. Lett. 106, 160601 (2011)
M. R. Evans and S. N. Majumdar, J. Phys. A: Math. Theor. 44, 435001 (2011)

Forward Equation for $p\left(x, t \mid x_{0}\right)$, the probability density of the position x of a diffusing particle at time t, having begun from x_{0} at time 0

$$
\frac{\partial p\left(x, t \mid x_{0}\right)}{\partial t}=D \frac{\partial^{2} p\left(x, t \mid x_{0}\right)}{\partial x^{2}}
$$

with initial condition $p\left(x, 0 \mid x_{0}\right)=\delta\left(x-x_{0}\right)$.

Forward Equation for $p\left(x, t \mid x_{0}\right)$, the probability density of the position x of a diffusing particle at time t, having begun from x_{0} at time 0

$$
\frac{\partial p\left(x, t \mid x_{0}\right)}{\partial t}=D \frac{\partial^{2} p\left(x, t \mid x_{0}\right)}{\partial x^{2}}
$$

with initial condition $p\left(x, 0 \mid x_{0}\right)=\delta\left(x-x_{0}\right)$.
Solution (initial value Green function)

$$
p\left(x, t \mid x_{0}\right)=\frac{1}{\sqrt{4 D t}} \exp -\frac{\left(x-x_{0}\right)^{2}}{4 D t}
$$

Forward Equation for $p\left(x, t \mid x_{0}\right)$, the probability density of the position x of a diffusing particle at time t, having begun from x_{0} at time 0

$$
\frac{\partial p\left(x, t \mid x_{0}\right)}{\partial t}=D \frac{\partial^{2} p\left(x, t \mid x_{0}\right)}{\partial x^{2}}
$$

with initial condition $p\left(x, 0 \mid x_{0}\right)=\delta\left(x-x_{0}\right)$.
Solution (initial value Green function)

$$
p\left(x, t \mid x_{0}\right)=\frac{1}{\sqrt{4 D t}} \exp -\frac{\left(x-x_{0}\right)^{2}}{4 D t}
$$

Also satisfies Backward Equation

$$
\frac{\partial p\left(x, t \mid x_{0}\right)}{\partial t}=D \frac{\partial^{2} p\left(x, t \mid x_{0}\right)}{\partial x_{0}^{2}}
$$

Absorbing target at the origin

Boundary condition $p\left(x, t \mid x_{0}\right)=0$ when x or $x_{0}=0$
Survival probability $q\left(t \mid x_{0}\right)=\int_{0}^{\infty} \mathrm{d} x p\left(x, t \mid x_{0}\right)$ satisfies
Backward equation

$$
\frac{\partial q\left(t \mid x_{0}\right)}{\partial t}=D \frac{\partial^{2} q\left(t \mid x_{0}\right)}{\partial x_{0}^{2}}
$$

with boundary/initial conditions $q(t \mid 0)=0$ and $q\left(0 \mid x_{0}\right)=1 x_{0} \neq 0$

Absorbing target at the origin

Boundary condition $p\left(x, t \mid x_{0}\right)=0$ when x or $x_{0}=0$
Survival probability $q\left(t \mid x_{0}\right)=\int_{0}^{\infty} \mathrm{d} x p\left(x, t \mid x_{0}\right)$ satisfies
Backward equation

$$
\frac{\partial q\left(t \mid x_{0}\right)}{\partial t}=D \frac{\partial^{2} q\left(t \mid x_{0}\right)}{\partial x_{0}^{2}}
$$

with boundary/initial conditions $q(t \mid 0)=0$ and $q\left(0 \mid x_{0}\right)=1 x_{0} \neq 0$
Solution

$$
q\left(t \mid x_{0}\right)=\operatorname{erf}\left(\frac{x_{0}}{2 \sqrt{D t}}\right) \simeq \frac{x_{0}}{\sqrt{D \pi} t^{1 / 2}} \quad \text { for } t \gg 1
$$

The mean first passage time $T=-\int_{0}^{\infty} \mathrm{d} t t \frac{\partial q\left(t \mid x_{0}\right)}{\partial t} \rightarrow \infty$

Absorbing target at the origin

Boundary condition $p\left(x, t \mid x_{0}\right)=0$ when x or $x_{0}=0$
Survival probability $q\left(t \mid x_{0}\right)=\int_{0}^{\infty} \mathrm{d} x p\left(x, t \mid x_{0}\right)$ satisfies
Backward equation

$$
\frac{\partial q\left(t \mid x_{0}\right)}{\partial t}=D \frac{\partial^{2} q\left(t \mid x_{0}\right)}{\partial x_{0}^{2}}
$$

with boundary/initial conditions $q(t \mid 0)=0$ and $q\left(0 \mid x_{0}\right)=1 x_{0} \neq 0$
Solution

$$
q\left(t \mid x_{0}\right)=\operatorname{erf}\left(\frac{x_{0}}{2 \sqrt{D t}}\right) \simeq \frac{x_{0}}{\sqrt{D \pi} t^{1 / 2}} \quad \text { for } t \gg 1
$$

The mean first passage time $T=-\int_{0}^{\infty} \mathrm{d} t t \frac{\partial q\left(t \mid x_{0}\right)}{\partial t} \rightarrow \infty$

Conclusion

a purely diffusive search for a target is not efficient since mean time to absorption diverges

II Diffusion with resetting

Now consider resetting the particle to the initial position x_{0} with rate r :
Forward equation for $p\left(x, t \mid x_{0}\right)$ now reads (no absorbing target)

$$
\frac{\partial p\left(x, t \mid x_{0}\right)}{\partial t}=D \frac{\partial^{2} p\left(x, t \mid x_{0}\right)}{\partial x^{2}}-r p\left(x, t \mid x_{0}\right)+r \delta\left(x-x_{0}\right)
$$

i.e. loss rate r from all $x \neq x_{0}$ provides source at x_{0}

II Diffusion with resetting

Now consider resetting the particle to the initial position x_{0} with rate r :
Forward equation for $p\left(x, t \mid x_{0}\right)$ now reads (no absorbing target)

$$
\frac{\partial p\left(x, t \mid x_{0}\right)}{\partial t}=D \frac{\partial^{2} p\left(x, t \mid x_{0}\right)}{\partial x^{2}}-r p\left(x, t \mid x_{0}\right)+r \delta\left(x-x_{0}\right)
$$

i.e. loss rate r from all $x \neq x_{0}$ provides source at x_{0}

For $t \rightarrow \infty$ the stationary state probability density is

$$
p_{\text {st }}\left(x \mid x_{0}\right)=\frac{\alpha_{0}}{2} \exp \left(-\alpha_{0}\left|x-x_{0}\right|\right) \quad \text { where } \quad \alpha_{0}=\sqrt{r / D}
$$

Nonequilibrium stationary state

Survival probability with resetting

The Backward equation for the survival probability $q(t \mid z)$ when there is an absorbing target at the origin reads

$$
\frac{\partial q(t \mid z)}{\partial t}=D \frac{\partial^{2} q(t \mid z)}{\partial z^{2}}-r q(t \mid z)+r q\left(t \mid x_{0}\right)
$$

with boundary/initial conditions $q(t \mid 0)=0$ and $q(0 \mid z)=1 z \neq 0$
z is the starting position (variable) and x_{0} is the fixed resetting position

Survival probability with resetting

The Backward equation for the survival probability $q(t \mid z)$ when there is an absorbing target at the origin reads

$$
\frac{\partial q(t \mid z)}{\partial t}=D \frac{\partial^{2} q(t \mid z)}{\partial z^{2}}-r q(t \mid z)+r q\left(t \mid x_{0}\right)
$$

with boundary/initial conditions $q(t \mid 0)=0$ and $q(0 \mid z)=1 z \neq 0$
z is the starting position (variable) and x_{0} is the fixed resetting position Laplace transform satisfies

$$
D \frac{\mathrm{~d}^{2} \widetilde{q}(s \mid z)}{\mathrm{d} z^{2}}-(s+r) \widetilde{q}(s \mid z)=-1-r \widetilde{q}\left(s \mid x_{0}\right)
$$

Solution which fits boundary/initial conditions

$$
\widetilde{q}(s \mid z)=\left[1+r \widetilde{q}\left(s \mid x_{0}\right)\right] \frac{1-\mathrm{e}^{-\alpha z}}{s+r}
$$

Survival probability with resetting

The Backward equation for the survival probability $q(t \mid z)$ when there is an absorbing target at the origin reads

$$
\frac{\partial q(t \mid z)}{\partial t}=D \frac{\partial^{2} q(t \mid z)}{\partial z^{2}}-r q(t \mid z)+r q\left(t \mid x_{0}\right)
$$

with boundary/initial conditions $q(t \mid 0)=0$ and $q(0 \mid z)=1 z \neq 0$
z is the starting position (variable) and x_{0} is the fixed resetting position Laplace transform satisfies

$$
D \frac{\mathrm{~d}^{2} \widetilde{q}(s \mid z)}{\mathrm{d} z^{2}}-(s+r) \widetilde{q}(s \mid z)=-1-r \widetilde{q}\left(s \mid x_{0}\right)
$$

Solution which fits boundary/initial conditions

$$
\widetilde{q}(s \mid z)=\left[1+r \widetilde{q}\left(s \mid x_{0}\right)\right] \frac{1-\mathrm{e}^{-\alpha z}}{s+r}
$$

Then solve self-consistently for

$$
\tilde{q}\left(s \mid x_{0}\right)=\frac{1-\mathrm{e}^{-\alpha x_{0}}}{s+r \mathrm{e}^{-\alpha x_{0}}} \quad \text { where } \quad \alpha=\left(\frac{s+r}{D}\right)^{1 / 2}
$$

Mean first passage time (MFPT)

MFPT $T=-\int_{0}^{\infty} \mathrm{d} t t \frac{\partial q\left(t \mid x_{0}\right)}{\partial t}=\widetilde{q}\left(0 \mid x_{0}\right)$ is now finite for $0<r<\infty$

$$
T=\frac{\mathrm{e}^{x_{0}(r / D)^{1 / 2}}-1}{r}
$$

Mean first passage time (MFPT)

MFPT $T=-\int_{0}^{\infty} \mathrm{d} t t \frac{\partial q\left(t \mid x_{0}\right)}{\partial t}=\widetilde{q}\left(0 \mid x_{0}\right)$ is now finite for $0<r<\infty$

$$
T=\frac{\mathrm{e}^{x_{0}(r / D)^{1 / 2}}-1}{r}
$$

$$
\begin{gathered}
\frac{\mathrm{d} T}{\mathrm{~d} r}=0 \\
\Rightarrow \frac{y}{2}=1-\mathrm{e}^{-y} \\
\text { where } y=x_{0}(r / D)^{1 / 2}
\end{gathered}
$$

$y=$ distance from target : typical distance diffused between resets Optimal $y^{*}=1.5936 \ldots$

Survival probability

The long-time behaviour of the $q\left(t \mid x_{0}\right)$ is now controlled by simple pole of $\widetilde{q}\left(s \mid x_{0}\right)=\frac{1-\mathrm{e}^{-\alpha x_{0}}}{s+r \mathrm{e}^{-\alpha x_{0}}}$ at

$$
s_{0}=-r \exp -x_{0}\left[\left(r+s_{0}\right) / D\right]^{1 / 2}
$$

Survival probability

The long-time behaviour of the $q\left(t \mid x_{0}\right)$ is now controlled by simple pole of $\widetilde{q}\left(s \mid x_{0}\right)=\frac{1-\mathrm{e}^{-\alpha x_{0}}}{s+r \mathrm{e}^{-\alpha x_{0}}}$ at

$$
s_{0}=-r \exp -x_{0}\left[\left(r+s_{0}\right) / D\right]^{1 / 2}
$$

For $y=x_{0}(r / D)^{1 / 2} \gg 1 \quad s_{0} \simeq-r \exp -y$ and

$$
q\left(t \mid x_{0}\right) \simeq \exp \left(-r t \mathrm{e}^{-y}\right)
$$

which has the form of a Gumbel distribution which gives the cumulative distribution for the maximum of independent r.v.s

Survival probability

The long-time behaviour of the $q\left(t \mid x_{0}\right)$ is now controlled by simple pole of $\tilde{q}\left(s \mid x_{0}\right)=\frac{1-\mathrm{e}^{-\alpha x_{0}}}{s+r \mathrm{e}^{-\alpha x_{0}}}$ at

$$
s_{0}=-r \exp -x_{0}\left[\left(r+s_{0}\right) / D\right]^{1 / 2}
$$

For $y=x_{0}(r / D)^{1 / 2} \gg 1 \quad s_{0} \simeq-r \exp -y$ and

$$
q\left(t \mid x_{0}\right) \simeq \exp \left(-r t \mathrm{e}^{-y}\right)
$$

which has the form of a Gumbel distribution which gives the cumulative distribution for the maximum of independent r.v.s

Explanation

On average there are $r t$ resets. For each reset the process is "renewed" and the particle trajectory is independent. The particle must not reach the origin in any reset to survive.

So survival is probability that max excursion to left, out of $\simeq r t$ resets, is less than x_{0}

III Many Searchers

Consider the survival probability of a target at the origin in the presence of many particles (searchers/traps).
$t=0 \quad \mathrm{~N}$ searchers

N searchers beginning at $x_{i} \quad i=1 \ldots N$
$p(x)=\frac{1}{L} \quad|x| \leq \frac{L}{2}$ (uniform distribution) density $\rho=\frac{N}{L}$
Survival probability of target $Q\left(t \mid\left\{x_{i}\right\}\right)=\prod_{i=1}^{N} q\left(t \mid x_{i}\right)$

III Many Searchers

Consider the survival probability of a target at the origin in the presence of many particles (searchers/traps).

$t=0 \quad \mathrm{~N}$ searchers

N searchers beginning at $x_{i} \quad i=1 \ldots N$
$p(x)=\frac{1}{L} \quad|x| \leq \frac{L}{2}$ (uniform distribution) density $\quad \rho=\frac{N}{L}$
Survival probability of target $Q\left(t \mid\left\{x_{i}\right\}\right)=\prod_{i=1}^{N} q\left(t \mid x_{i}\right)$

For diffusive particles

decay with time t is $Q(t) \sim \exp (-\lambda \rho \sqrt{D t})$ where λ is a constant which depends on whether we consider the average or typical behaviour How does resetting affect this result?

Many Searchers: General Formulation

Average (annealed) probability

$$
\begin{aligned}
Q^{\mathrm{av}}(t) & =\prod_{i=1}^{N}\left\langle q\left(t \mid x_{i}\right)\right\rangle_{x_{i}}=\exp N \ln \langle q(t \mid x)\rangle_{x} \\
& \rightarrow \exp -2 \rho \int_{0}^{\infty} \mathrm{d} x(1-q(t \mid x))
\end{aligned}
$$

Typical (quenched) probability

$$
\begin{aligned}
Q^{t y p}(t) & =\exp \left\langle\ln Q\left(t \mid\left\{x_{i}\right\}\right)\right\rangle_{\left\{x_{i}\right\}}=\exp N\langle\ln q(t \mid x)\rangle_{x} \\
& \rightarrow \exp 2 \rho \int_{0}^{\infty} \mathrm{d} x \ln q(t \mid x)
\end{aligned}
$$

Many Searchers: Results

$$
\begin{aligned}
& \text { Diffusive case recall } q(t \mid x)=\operatorname{erf}\left(\frac{x}{2 \sqrt{D t}}\right) \text { which yields } \\
& \qquad Q^{a v, t y p}(t)=\exp \left[-\lambda^{a v, t y p} \rho \sqrt{D t}\right]
\end{aligned}
$$

Many Searchers: Results

Diffusive case recall $q(t \mid x)=\operatorname{erf}\left(\frac{x}{2 \sqrt{D t}}\right)$ which yields

$$
Q^{a v, t y p}(t)=\exp \left[-\lambda^{a v, t y p} \rho \sqrt{D t}\right]
$$

With Resetting
$r t \ll 1 \quad$ recovers diffusive results
$r t \gg 1$

$$
\begin{gathered}
Q^{\text {av }}(t) \simeq \text { constant } t^{-2 \rho \sqrt{D / r}} \\
Q^{\text {typ }}(t) \simeq \exp \left[-t \rho \sqrt{\operatorname{Dr}} 8(1-\ln 2)+O\left(t^{1 / 2}\right)\right]
\end{gathered}
$$

Explanation of different behaviours

$Q^{\text {av }}(t) \gg Q^{t y p}(t)$ since average behaviour dominated by rare realisations of $\left\{x_{i}\right\}$ far from target \rightarrow memory of initial conditions

Summary and Outlook

Summary

- Resetting gives finite mean first passage time
- Survival probability for single searcher decays exponentially
- Connection to statistics of extremes and a renewal process
- For many searchers survival probability of target typically decays exponentially but rare events make average decay more slowly

Summary and Outlook

Summary

- Resetting gives finite mean first passage time
- Survival probability for single searcher decays exponentially
- Connection to statistics of extremes and a renewal process
- For many searchers survival probability of target typically decays exponentially but rare events make average decay more slowly

Outlook

- Higher spatial dimensions can be studied
- $r(x)$ can be made position dependent
- A target distribution can be considered
- A resetting distribution $\mathcal{P}\left(x_{0}\right)$ can be considered
- Other optimisation problems e.g. cost for resetting

