Sampling methods in molecular dynamics: efficient sampling of metastable trajectories

T. Lelièvre
CERMICS - Ecole des Ponts ParisTech & MicMac project-team - INRIA

Workshop "Computation of transition trajectories and rare events in non-equilibrium systems"
ENS Lyon, June 2012
Introduction

The aim of molecular dynamics simulations is to understand the relationships between the macroscopic properties of a molecular system and its atomistic features. In particular, one would like to evaluate numerically macroscopic quantities from models at the microscopic scale.

Some examples of macroscopic quantities:

(i) **Thermodynamics quantities** (average of some observable wrt an equilibrium measure): stress, heat capacity, free energy,...

\[
\mathbb{E}_\mu(\varphi(X)) = \int_{\mathbb{R}^d} \varphi(x) \mu(dx).
\]

(ii) **Dynamical quantities** (average over trajectories at equilibrium): diffusion coefficients, viscosity, transition rates,...

\[
\mathbb{E}(\mathcal{F}((X_t)_{t\geq 0})) = \int_{C^0(\mathbb{R}^+,\mathbb{R}^d)} \mathcal{F}((x_t)_{t\geq 0}) \mathcal{W}(d((x_t)_{t\geq 0})).
\]
Introduction

Many applications in various fields: biology, physics, chemistry, materials science. Molecular dynamics computations consume today a lot of CPU time.

A molecular dynamics model amounts essentially in choosing a potential V which associates to a configuration $(x_1, ..., x_N) = x \in \mathbb{R}^{3N}$ an energy $V(x_1, ..., x_N)$.

In the canonical (NVT) ensemble, configurations are distributed according to the Boltzmann-Gibbs probability measure:

$$d\mu(x) = Z^{-1} \exp(-\beta V(x)) \, dx,$$

where $Z = \int \exp(-\beta V(x)) \, dx$ is the partition function and $\beta = (k_B T)^{-1}$ is proportional to the inverse of the temperature.
Typically, V is a sum of potentials modelling interaction between two particles, three particles and four particles:

$$
V = \sum_{i<j} V_1(x_i, x_j) + \sum_{i<j<k} V_2(x_i, x_j, x_k) + \sum_{i<j<k<l} V_3(x_i, x_j, x_k, x_l).
$$

For example, $V_1(x_i, x_j) = V_{LJ}(|x_i - x_j|)$ where $V_{LJ}(r) = 4\varepsilon \left((\frac{\sigma}{r})^{12} - (\frac{\sigma}{r})^{6} \right)$ is the Lennard-Jones potential.

Difficulties: (i) high-dimensional problem ($N \gg 1$) ; (ii) μ is a multimodal measure.
Introduction

To sample μ, ergodic dynamics wrt to μ are used. A typical example is the over-damped Langevin (or gradient) dynamics:

$$dX_t = -\nabla V(X_t) \, dt + \sqrt{2\beta^{-1}} \, dW_t.$$

It is the limit (when the mass goes to zero or the damping parameter to infinity) of the Langevin dynamics:

$$\begin{cases}
 dX_t = M^{-1} P_t \, dt, \\
 dP_t = -\nabla V(X_t) \, dt - \gamma M^{-1} P_t \, dt + \sqrt{2\gamma\beta^{-1}} \, dW_t,
\end{cases}$$

where M is the mass tensor and γ is the friction coefficient.

To compute dynamical quantities, these are also typically the dynamics of interest. Thus,

$$\mathbb{E}_\mu(\varphi(X)) \approx \frac{1}{T} \int_0^T \varphi(X_t) \, dt \quad \text{and} \quad \mathbb{E}(\mathcal{F}((X_t)_{t \geq 0})) \approx \frac{1}{N} \sum_{m=1}^N \mathcal{F}((X^m_t)_{t \geq 0}).$$

In the following, we mainly consider the over-damped Langevin dynamics.
Introduction

Difficulty: In practice, X_t is a metastable process, so that the convergence to equilibrium is very slow, and sampling metastable trajectories is very difficult.

A 2d schematic picture: X^1_t is a slow variable (a metastable dof) of the system.
Introduction

Where does metastability come from?

Energetic barrier:

Entropic barrier:
Introduction

For computing thermodynamics quantities, there is a clear classification of available methods, and the difficulties are now well understood (in particular for free energy computations, see for example the review [TL, Rousset, Stoltz, 2010]). On the opposite, computing efficiently dynamical quantities remains a challenge.

In practice, one is only interested in a reduced description of the original full dynamics \((X_t)_{t \geq 0}\). Two cases:

Case 1: One is given a smooth low-dimensional function

\[
\xi : \mathbb{R}^d \rightarrow \mathbb{R}
\]

and the aim is to capture the dynamics of \((\xi(X_t))_{t \geq 0}\).

Case 2: One is given a continuous state to discrete state map

\[
S : \mathbb{R}^d \rightarrow \mathbb{N}
\]

and the aim is to capture the dynamics of \((S(X_t))_{t \geq 0}\).
In the following, I will present:

1. An analytical procedure to approximate \((\xi(X_t))_{t \geq 0}\): error analysis of an effective dynamics.

2. An algorithm to generate transition paths, using \(\xi\): the Adaptive multilevel splitting method.

3. The mathematical analysis of an algorithm proposed by A. Voter to approximate \((S(X_t))_{t \geq 0}\): the Parallel Replica dynamics.

There are many other techniques: hyperdynamics and temperature accelerated dynamics [Voter, Fichthorn], the string method [E, Ren, Vanden-Eijnden], transition path sampling methods [Chandler, Bolhuis, Dellago], milestoning techniques [Elber, Schuette, Vanden-Eijnden], etc...
Preliminary remark:
To estimate the error in the dynamics, two measures may be used:

A Error on the propagation of the law at time t of the coarse-grained process (time marginals). (PDE)

B Error on the law of the trajectories of the coarse-grained process. (SDE)

Of course, B is better than A. A is a first step to B, and is often more tractable mathematically.
Effective dynamics

Recall the original dynamics

\[dX_t = -\nabla V(X_t) \, dt + \sqrt{2\beta^{-1}} \, dW_t. \]

We are given a smooth one dimensional function \(\xi : \mathbb{R}^d \to \mathbb{R} \).

Problem: propose a Markovian dynamics (say on \(z_t \in \mathbb{R} \)) that approximates the dynamics \((\xi(X_t))_{t \geq 0} \).
Construction of the effective dynamics

By Itô, one has

\[d\xi(X_t) = (-\nabla V \cdot \nabla \xi + \beta^{-1} \Delta \xi)(X_t) \, dt + \sqrt{2\beta^{-1}} |\nabla \xi(X_t)| \frac{\nabla \xi(X_t)}{|\nabla \xi(X_t)|} \cdot dW_t \]

First attempt:

\[d\tilde{z}_t = \tilde{b}(t, \tilde{z}_t) \, dt + \sqrt{2\beta^{-1}} \tilde{\sigma}(t, \tilde{z}_t) \, dB_t \]

with

\[\tilde{b}(t, \tilde{z}) = \mathbb{E} \left((\nabla V \cdot \nabla \xi + \beta^{-1} \Delta \xi)(X_t) \bigg| \xi(X_t) = \tilde{z} \right) \]

\[\tilde{\sigma}^2(t, \tilde{z}) = \mathbb{E} \left(|\nabla \xi|^2(X_t) \bigg| \xi(X_t) = \tilde{z} \right). \]

Then, for all time \(t \geq 0 \), \(\mathcal{L}(\xi(X_t)) = \mathcal{L}(\tilde{z}_t) \) ! But \(\tilde{b} \) and \(\tilde{\sigma} \) are untractable numerically...
Construction of the effective dynamics

By Itô, one has

\[d\xi(X_t) = (-\nabla V \cdot \nabla \xi + \beta^{-1} \Delta \xi)(X_t) \, dt + \sqrt{2\beta^{-1}} |\nabla \xi(X_t)| \frac{\nabla \xi(X_t)}{|\nabla \xi(X_t)|} \cdot dW_t \]

The effective dynamics:

\[dz_t = b(z_t) \, dt + \sqrt{2\beta^{-1}} \sigma(z_t) \, dB_t \]

with

\[b(z) = \mathbb{E}_\mu \left((-\nabla V \cdot \nabla \xi + \beta^{-1} \Delta \xi)(X) \bigg\vert \xi(X) = z \right) \]

\[\sigma^2(z) = \mathbb{E}_\mu \left(|\nabla \xi|^2(X) \bigg\vert \xi(X) = z \right). \]

Related approaches: Mori-Zwanzig and projection operator formalism [E/Vanden-Eijnden, ...], asymptotic approaches [Papanicolaou, Freidlin, Pavliotis/Stuart, ...].
Link with the free energy

Recall the definition of the free energy:

\[A(z) = -\beta^{-1} \ln \int \exp(-\beta V(x)) \delta_{\xi(x)=z} (dx). \]

The effective dynamics is:

\[dz_t = b(z_t) \, dt + \sqrt{2\beta^{-1}} \sigma(z_t) \, dB_t \]

with

\[b(z) = \mathbb{E}_\mu \left(\left. (-\nabla V \cdot \nabla \xi + \beta^{-1} \Delta \xi)(X) \right| \xi(X) = z \right) \]

\[= -\sigma^2(z) A'(z) + \beta^{-1} \partial_z \sigma^2(z), \]

\[\sigma^2(z) = \mathbb{E}_\mu \left(\left. |\nabla \xi|^2(X) \right| \xi(X) = z \right). \]

Thus, the effective dynamics is:

\[dz_t = \sigma^2(z_t) \left(-A'(z_t) + \beta^{-1} \partial_z [\ln(\sigma^2)](z_t) \right) \, dt + \sqrt{2\beta^{-1}} \sigma(z_t) \, dB_t. \]
Error analysis: time marginals

The effective dynamics is ergodic (detailed balanced) wrt $\xi \ast \mu$. Moreover Under the assumptions ($|\nabla \xi| = Cte$ for simplicity):

(H1) The conditional probability measures $\mu(\cdot|\xi(x) = z)$ satisfy a Logarithmic Sobolev Inequality with constant ρ,

(H2) Bounded coupling assumption: $\|\nabla V \cdot \nabla V\|_{L^\infty} \leq \kappa$,

(H3) The probability measure μ satisfies a Logarithmic Sobolev Inequality with constant R,

Then, $\exists C > 0$, $\forall t \geq 0$,

$$
\|{\mathcal L}(\xi(X_t)) - {\mathcal L}(z_t)\|_{TV} \leq C \min \left(\frac{\kappa}{\rho} \left(H({\mathcal L}(X_0)|\mu) - H({\mathcal L}(X_t)|\mu) \right), \exp(-\beta^{-1}Rt) \right).
$$

Typically $\rho \gg R$.

The proof [Legoll, TL] is PDE-based. It is inspired by a decomposition of the entropy proposed in [Grunewald/Otto/Villani/Westdickenberg], and entropy estimates.
Error analysis: pathwise convergence

Assume for simplicity $\xi(x) = x_1$ where $X = (x_1, \ldots, x_d)$ (so that $\sigma = 1$ and $b(z) = -\mathbb{E}_\mu(\partial_{x_1} V(X)|\xi(X) = z)$). Then one can show that under the assumptions:

(H1)' The conditional probability measures $\mu(\cdot|\xi(x) = z)$ satisfy a Poincaré Inequality with constant ρ,

(H2)' Bounded coupling assumption: $\|\partial_{x_2 \ldots d} \partial_{x_1} V\|_{L^\infty} \leq \kappa$,
then

$$X_{1,t} - z_t = \int_0^t (b(X_{1,t}) - b(z_t)) \, dt + R_t$$

where

$$\mathbb{E} \left(\sup_{0 \leq t \leq T} R_t^2 \right) \leq \frac{C(\kappa) T}{\rho}.$$

The proof [Legoll, TL, Olla] is probabilistic in nature.

Then, using Gronwall-like argument, one obtains almost sure error estimates on the trajectories on finite time intervals (typically if b is smooth and decreasing at infinity).
Splitting strategies
We would like to sample trajectories between two given metastable states A and B. The main assumption in this section is that we are given a smooth one dimensional function $\xi : \mathbb{R}^d \rightarrow \mathbb{R}$ (s.t. $|\nabla \xi| \neq 0$) which "indexes" the transition from A to B in the following sense:

$$A \subset \{x \in \mathbb{R}^d, \xi(x) < z_{\text{min}}\} \text{ and } B \subset \{x \in \mathbb{R}^d, \xi(x) > z_{\text{max}}\},$$

where $z_{\text{min}} < z_{\text{max}}$, and Σz_{min} (resp. Σz_{max}) is “close” to ∂A (resp. ∂B).

Example: $\xi(x) = \|x - x_A\|$ where $x_A \in A$ is a reference configuration in A.
Question: How to compute dynamical quantities using ξ? More precisely, we consider: (a) Reactive trajectories and (b) Transition times between the two metastable states A and B.

We propose a multilevel splitting approach [Kahn, Harris, 1951] [Rosenbluth, 1955] to discard failed trajectories and branch trajectories approaching the rare set. We focus on an adaptive variant [Cérou, Guyader, 2007] [Cérou, Guyader, TL, Pommier, 2010]: the Adaptive Multilevel Splitting (AMS) algorithm.
A reactive trajectory between two metastable sets A and B is a piece of equilibrium trajectory that leaves A and goes to B without going back to A in the meantime [Hummer, 2004] [Metzner, Schütte, Vanden-Eijnden, 2006].

Difficulty: A trajectory leaving A is more likely to go back to A than to reach B.
AMS Algorithm

Initialisation: Generate an ensemble of N equilibrium trajectories starting from A, up to the time it reaches A or B, conditionnally to the fact that $\sup_{t \in (0, \tau^n)} \xi(X_t^n) > z_{\text{min}}$. This is easily done by DNS.

Algorithm: (i) Order the $z^n = \sup_{t \in (0, \tau^n)} \xi(X_t^n)$; (ii) Kill the trajectory with the smallest supremum (say z^{n_0}); (iii) Create a new trajectory by branching another trajectory from the first time it crosses $\Sigma_{z^{n_0}}$; Go back to (i) until z^{n_0} is larger than z_{max}.

This generates an ensemble of N equilibrium trajectories starting from A, up to the time it reaches A or B, conditionnally to the fact that $\sup_{t \in (0, \tau^n)} \xi(X_t^n) > z_{\text{max}}$.

Final step: To get reactive trajectories, one only retains paths which indeed end in B, and the part of the trajectory between A and B.

Remark: The algorithm can be seen as a kind of adaptive Forward Flux Sampling [Allen, Valeriani, Ten Wolde, 2009]. It is also related to the Interface Sampling Method [Bolhuis, van Erp, Moroni 2003] and the Milestoning method [Elber, Faradjian 2004]. See the review paper [Bolhuis, Dellago, 2009].
AMS Algorithm

An important output of the algorithm is

$$\hat{\alpha}_N = (1 - 1/N)^{k_{\text{max}}} r$$

where N is the number of trajectories, k_{max} the number of iterations to reach the quantile z_{max}, and r the proportion of trajectories that do finally end in B and not in A (at the final step).

The probability $\hat{\alpha}_N$ is an estimator of the probability for an equilibrium trajectory leaving A and reaching $\Sigma_{z_{\text{min}}}$ to reach B before A. It may be interpreted as a “probability of observing a reactive trajectory”.

Values for $\hat{\alpha}_N$ in the numerical results below vary between 10^{-18} and 10^{-4} depending on the test cases: these are very rare events.
Numerical results

In all the numerical tests, we use overdamped dynamics, but the algorithm applies to any stochastic Markovian dynamics, is straightforward to parallelize, and requires only a small modification of an original MD code.

A 1D example: We consider the double-well potential:

\[V(x) = x^4 - 2x^2, \]

which has two minima at ±1 and one saddle point at 0. In this simple one dimensional setting, we set as metastable states \(A = \{-1\} \) and \(B = \{+1\} \), and the reaction coordinate is taken to be simply

\[\xi(x) = x. \]

To test the consistency of the algorithm, we compute the distribution of the time-lengths of the reactive paths and compare to DNS (when possible).
A 1D example

Distributions of time-lengths of reactive paths. Comparison with DNS for $\beta = 1, 5, 10$ and distributions for $\beta = 1, 5, 10, 15, 20, 30, 40$.
A 1D example

<table>
<thead>
<tr>
<th>β</th>
<th>N</th>
<th>$\hat{\alpha}_N$</th>
<th>DNS CPU</th>
<th>AMS CPU</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>10^4</td>
<td>1.03 10^{-1}</td>
<td>2s</td>
<td>2s</td>
</tr>
<tr>
<td>1</td>
<td>10^5</td>
<td>1.01 10^{-1}</td>
<td>21s</td>
<td>1 min 19 s</td>
</tr>
<tr>
<td>10</td>
<td>10^4</td>
<td>2.04 10^{-5}</td>
<td>140 min 05 s</td>
<td>5 s</td>
</tr>
<tr>
<td>10</td>
<td>10^5</td>
<td>1.98 10^{-5}</td>
<td>1400 min *</td>
<td>5 min 22 s</td>
</tr>
<tr>
<td>15</td>
<td>10^5</td>
<td>1.78 10^{-7}</td>
<td>92000 min *</td>
<td>7 min 52 s</td>
</tr>
<tr>
<td>20</td>
<td>10^5</td>
<td>1.33 10^{-9}</td>
<td></td>
<td>8 min 36 s</td>
</tr>
<tr>
<td>40</td>
<td>10^5</td>
<td>5.82 10^{-18}</td>
<td></td>
<td>10 min 09 s</td>
</tr>
</tbody>
</table>

Probability $\hat{\alpha}_N$, and computational time for different values of β and numbers of paths N. DNS CPU time with * is an extrapolated time deduced from a small number of generated reactive trajectories.

The algorithm makes possible the generation of reactive trajectories for some parameter values for which DNS would be impractical.
A 2D example

Let us consider the potential ([Park, Sener, Lu, Schulten, 2003] [Metzner, Schütte and Vanden-Eijnden, 2006]):

\[
V(x, y) = 3e^{-x^2 - (y - \frac{1}{3})^2} - 3e^{-x^2 - (y - \frac{5}{3})^2} - 5e^{-(x-1)^2 - y^2} - 5e^{-(x+1)^2 - y^2} + 0.2x^4 + 0.2 \left(y - \frac{1}{3}\right)^4.
\]
A 2D example

The interest of this “bi-channel” potential is that, depending on the temperature, one or the other channel is preferred to go from A (around $H_- = (-1, 0)$) to B (around $H_+ = (1, 0)$).

We will look at two quantities ([Hummer, 2004] [Metzner, Schütte, Vanden-Eijnden, 2006]): the density of configurations along reactive paths, and the flux of reactive trajectories, for two values of the inverse temperature $\beta = 1.67$ and $\beta = 6.67$.

Two reaction coordinates are tested: $\xi_1(x, y) = x$ or $\xi_2(x, y) = \| (x, y) - H_- \|$. Both give reliable results, even though: (i) They are not the commitor functions ; (ii) The system exhibits metastabilities at fixed values of ξ_i.
Density on reactive paths

Results obtained for $\xi_1(x, y) = x$ and $N = 10^5$. Left: $\beta = 1.67$; Right: $\beta = 6.67$.

Introduction

Effective dynamics

Splitting strategies

The Parallel Replica Algorithm

References
Density on reactive paths

Results obtained for $\xi_2(x, y) = \|(x, y) - H_-\|$ and $N = 10^5$. Left: $\beta = 1.67$; Right: $\beta = 6.67$.
Density on reactive paths

Results obtained for $\xi_2(x, y) = \| (x, y) - H_- \|$ and $N = 10^4$. Left: $\beta = 1.67$; Right: $\beta = 6.67$.
Flux of reactive trajectories, at $\beta = 1.67$ on the left, and $\beta = 6.67$ on the right.
Computing transition times

To use the algorithm to compute transition times, we split a transition path from A to B into: excursions from ∂A to $\Sigma_{z_{\min}}$ and then back to ∂A, and finally an excursion from ∂A to $\Sigma_{z_{\min}}$ and then to B. Assuming $\Sigma_{z_{\min}}$ is close to an iso-committor (Markov property), one obtains that the mean transition time is:

$$\mathbb{E}(T) = \left(\frac{1}{p} - 1\right) \mathbb{E}(T_1 + T_2) + \mathbb{E}(T_1 + T_3)$$

where:

- p is the probability, once $\Sigma_{z_{\min}}$ has been reached, to go to B rather than A (approximated by $\hat{\alpha}_N$);
- $\mathbb{E}(T_1 + T_2)$ is the mean time for an excursion from ∂A to $\Sigma_{z_{\min}}$ and then back to ∂A (approximated by DNS);
- $\mathbb{E}(T_1 + T_3)$ is the mean time for an excursion from ∂A to $\Sigma_{z_{\min}}$ and then to B (approximated by the AMS algorithm).
Numerical results

Numerical results on the 1D case

<table>
<thead>
<tr>
<th>β</th>
<th>Δt</th>
<th>z_{min}</th>
<th>$\mathbb{E}(T)$ (DNS)</th>
<th>$\mathbb{E}(T)$ (AMS)</th>
<th>C.I. in $\mathbb{E}(T)$ (AMS)</th>
<th>Error (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>5</td>
<td>0.010</td>
<td>−0.9</td>
<td>185</td>
<td>208.3</td>
<td>[199.6, 217.7]</td>
<td>12.591</td>
</tr>
<tr>
<td>5</td>
<td>0.010</td>
<td>−0.6</td>
<td>185</td>
<td>221.2</td>
<td>[214.3, 228.4]</td>
<td>19.577</td>
</tr>
<tr>
<td>5</td>
<td>0.001</td>
<td>−0.9</td>
<td>185</td>
<td>187.4</td>
<td>[180.5, 194.8]</td>
<td>1.292</td>
</tr>
<tr>
<td>5</td>
<td>0.001</td>
<td>−0.6</td>
<td>185</td>
<td>193.2</td>
<td>[188.3, 198.3]</td>
<td>4.459</td>
</tr>
<tr>
<td>7</td>
<td>0.010</td>
<td>−0.9</td>
<td>1405</td>
<td>1515</td>
<td>[1468, 1565]</td>
<td>7.832</td>
</tr>
<tr>
<td>7</td>
<td>0.010</td>
<td>−0.6</td>
<td>1405</td>
<td>1642</td>
<td>[1567, 1722]</td>
<td>16.847</td>
</tr>
<tr>
<td>7</td>
<td>0.001</td>
<td>−0.9</td>
<td>1405</td>
<td>1380</td>
<td>[1316, 1449]</td>
<td>1.808</td>
</tr>
<tr>
<td>7</td>
<td>0.001</td>
<td>−0.6</td>
<td>1405</td>
<td>1400</td>
<td>[1358, 1444]</td>
<td>0.370</td>
</tr>
</tbody>
</table>

Transition times for small values of β, with various time steps Δt and z_{min}. Reference values are computed by DNS.
Comparison of the estimated mean transition times as a function of β with the asymptotic law from large deviation theory:

$$\mathbb{E}(T) \propto \exp(\beta \Delta V)$$

where $\Delta V = 1$ is the height of the energy barrier.
Numerical results

Numerical results on the 2D case

<table>
<thead>
<tr>
<th>$N \times 10^3$</th>
<th>β</th>
<th>k_{AB} (AMS)</th>
<th>C.I. on k_{AB} (AMS)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>1.67</td>
<td>2.03×10^{-2}</td>
<td>$[1.83; 2.22] \times 10^{-2}$</td>
</tr>
<tr>
<td>10</td>
<td>1.67</td>
<td>1.84×10^{-2}</td>
<td>$[1.82; 1.86] \times 10^{-2}$</td>
</tr>
<tr>
<td>50</td>
<td>1.67</td>
<td>1.88×10^{-2}</td>
<td>$[1.87; 1.88] \times 10^{-2}$</td>
</tr>
<tr>
<td>100</td>
<td>1.67</td>
<td>1.89×10^{-2}</td>
<td>$[1.89; 1.90] \times 10^{-2}$</td>
</tr>
<tr>
<td>2</td>
<td>6.67</td>
<td>9.97×10^{-8}</td>
<td>$[7.74; 12.2] \times 10^{-8}$</td>
</tr>
<tr>
<td>10</td>
<td>6.67</td>
<td>9.20×10^{-8}</td>
<td>$[7.71; 10.7] \times 10^{-8}$</td>
</tr>
<tr>
<td>50</td>
<td>6.67</td>
<td>8.88×10^{-8}</td>
<td>$[8.42; 9.34] \times 10^{-8}$</td>
</tr>
<tr>
<td>100</td>
<td>6.67</td>
<td>9.32×10^{-8}</td>
<td>$[9.08; 9.57] \times 10^{-8}$</td>
</tr>
</tbody>
</table>

Estimates of the reaction rate $k_{AB} = 2/E(T)$, with $\xi = \xi_2$. Values from [Metzner, Schütte, Vanden-Eijnden, 2006] are $k_{AB} = 1.912 \times 10^{-2}$ for $\beta = 1.67$ and $k_{AB} = 9.47 \times 10^{-8}$ for $\beta = 6.67$.
Adaptive multilevel splitting: conclusions

The method can be seen as an adaptive forward flux sampling or interface sampling technique.

Possible extensions:

- Generate equilibrium trajectories which leave a metastable state \(A \) without knowing the neighborhood.
- Adaptively compute a better and better \(\xi \) (proportional to the committor function).

The mathematical analysis of the AMS algorithm remains essentially to be done:

- Analysis of the time discretization error,
- Asymptotic variance of the estimator and optimization of \(\xi \),
- Precise estimate of the bias.
The Parallel Replica Algorithm
The Parallel Replica Algorithm

The Parallel Replica Algorithm, proposed by A.F. Voter in 1998, is a method to get efficiently a "coarse-grained projection" of a dynamics.

Let us consider again the overdamped Langevin dynamics:

$$dX_t = -\nabla V(X_t)\,dt + \sqrt{2\beta^{-1}}\,dW_t$$

and let assume that we are given a smooth mapping

$$S : \mathbb{R}^d \rightarrow \mathbb{N}$$

which to a configuration in \mathbb{R}^d associates a state number. Think of a numbering of the wells of the potential V.

The aim of the parallel replica dynamics is to generate very efficiently a trajectory $(S_t)_{t \geq 0}$ which has (almost) the same law as $(S(X_t))_{t \geq 0}$.

The Parallel Replica Algorithm

Initialization: Consider an initial condition X_{0}^{ref} for a reference walker, the associated initial condition $S_{0} = S(X_{0}^{\text{ref}})$, and a simulation time counter $T_{\text{simu}} = 0$.

Then, one iteration of the algorithm goes through three steps.

- **The decorrelation step:** Let the reference walker $(X_{T_{\text{simu}}+t}^{\text{ref}})_{t \geq 0}$ evolve over a time interval $t \in [0, \tau_{\text{corr}}]$. Then,
 - If the process leaves the well during the time interval (i.e. $\exists t \leq \tau_{\text{corr}}$ such that $S(X_{T_{\text{simu}}+t}^{\text{ref}}) \neq S(X_{T_{\text{simu}}}^{\text{ref}})$) advance the simulation clock by τ_{corr} and restart the decorrelation step;
 - otherwise, advance the simulation clock by τ_{corr} and proceed to the dephasing step.

During all this step, $S_{T_{\text{simu}}+t} := S(X_{T_{\text{simu}}+t}^{\text{ref}})$.
The Parallel Replica Algorithm

The reference walker enters a new state
The Parallel Replica Algorithm

Decorrelation step: wait for a time τ_{corr}.
• **The dephasing step**: Duplicate the walker $X_{\text{ref}}^{T_{\text{simu}}}$ into N replicas. Let these replicas evolve independently and in parallel over a time interval of length T_{dephase}. If a replica leaves the well during this time interval, restart the dephasing step for this replica. Throughout this step, the simulation counter is stopped.
The Parallel Replica Algorithm

Dephasing step.
The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
The Parallel Replica Algorithm

Dephasing step: generate new initial conditions in the state.
The parallel step: Let all the replicas evolve independently and track the first escape event:

\[T = \inf_k T_k^W = T_{K_0}^W \]

where \(K_0 = \arg \inf_k T_k^W \) and

\[T_k^W = \inf \{ t \geq 0, S(X_{T_{simu} + t}^k) \neq S(X_{T_{simu}}^k) \} \]

is the first time the \(k \)-th replica leaves the well. Then:

\[T_{simu} = T_{simu} + NT \quad \text{and} \quad X_{T_{simu} + NT}^{ref} = X_{T_{simu} + T}^{K_0} \]

Moreover, over \([T_{simu}, T_{simu} + NT]\), the state dynamics \(S_t \) is constant and defined as:

\[S_t = S(X_{T_{simu}}^1) \]

Then, go back to the decorrelation step...
The Parallel Replica Algorithm

Parallel step.
The Parallel Replica Algorithm

Parallel step: run independent trajectories in parallel...
The Parallel Replica Algorithm

Parallel step: ... and detect the first transition event.
Parallel step: update the time clock: \(T_{simu} = T_{simu} + NT \).
The Parallel Replica Algorithm

A new decorrelation step starts...
The Parallel Replica Algorithm

New decorrelation step
The Parallel Replica Algorithm

Analysis of the algorithm: the parallel step would introduce no error if

- the escape time T^1_W was *exponentially distributed*
- and *independent of the next visited state*.

This essentially amounts to assuming that $S(X_t)$ is a Markov chain...

How to analyze the error introduced by the algorithm?

This is related to the general question: how to relate a continuous state space Markov dynamics to a discrete state space Markov dynamics? Pitfalls: (i) the temperature is not necessarily small (ii) the partition of the state space may be anything (iii) no thermodynamic limit in general (non-homogeneous systems).
The quasi-stationary distribution

The quasi-stationary distribution (QSD) ν for X_t and associated to the actual well W is a probability measure which is (i) supported by W and such that (ii): $\forall t > 0$, $\forall A \subset W$,

$$\nu(A) = \frac{\int_W \mathbb{P}(X_t^x \in A, t < T_W^x) \nu(dx)}{\int_W \mathbb{P}(t < T_W^x) \nu(dx)}.$$

If $X_0 \sim \nu$ and if $(X_s)_{0 \leq s \leq t}$ has not left the well, then $X_t \sim \nu$.

Let $L = -\nabla V \cdot \nabla + \beta^{-1} \Delta$ be the infinitesimal generator of (X_t). Then the density u of ν ($d\nu = u(x)dx$) is the first eigenfunction of $L^* = \text{div} (\nabla V + \beta^{-1} \nabla)$ with absorbing boundary conditions:

$$\begin{cases}
L^* u = -\lambda_1 u \text{ on } W, \\
u = 0 \text{ on } \partial W.
\end{cases}$$
The quasi-stationary distribution and the dephasing step

Property of the QSD: If $X_0 \sim \nu$ then, the first exit time T_W from W is exponentially distributed with parameter λ_1 and is a random variable independent of the first hitting point X_{T_W} on ∂W.

The dephasing step is very much related to the so-called Fleming-Viot process and may be seen as a way to get N i.i.d. random variables distributed according to the QSD.

Remark: In general, T_W exponentially distributed is not sufficient for X_0 to be distributed according to ν.
The parallel step

As announced above, starting from the QSD, the parallel step is exact. This is stated precisely here.

Let us start from N initial conditions X^k_0 i.i.d. in the well W and let the processes evolve independently. Let us denote

$$T^k_W = \inf\{t > 0, X^k_t \not\in W\}$$

the escape time for the k-th replica, and

$$T = T^{K_0}_W \text{ where } K_0 = \arg\min_{k \in \{1, \ldots, N\}} T^k_W$$

the first escape time over all processes.

- Assume that T^1_W is exponentially distributed [OK starting from QSD.] Then NT has the same law as T^1_W.
- Assume that T^1_W is independent of $X^1_{T^1_W}$ [OK starting from QSD.] Then $X^{K_0}_{T^{K_0}_W}$ has the same distribution as $X^1_{T^1_W}$ and is independent of $T^{K_0}_W$.

The decorrelation step

We would like to quantify the error introduced by the dephasing and parallel steps, when the decorrelation step is successful.

As shown above, when the decorrelation step is successful, it is assumed that the reference walker is distributed according to the QSD. If it was indeed the case, the algorithm would be exact. The decorrelation step can be seen as a way to probe this assumption. What is the error introduced there?
The decorrelation step

We have the following error estimate in total variation norm: for \(t \geq \frac{C}{\lambda_2 - \lambda_1} \),

\[
\sup_{f, \|f\|_{L^\infty} \leq 1} \left| \mathbb{E}(f(T_W - t, X_{T_W}) \mid T_W \geq t) - \mathbb{E}^\nu(f(T_W, X_{T_W})) \right| \leq C \exp\left(- (\lambda_2 - \lambda_1) t \right),
\]

where \(-\lambda_2 < -\lambda_1 < 0\) are the two first eigenvalues of \(L^* \) with absorbing boundary conditions on \(\partial \mathcal{W} \).

This shows that \(\tau_{corr} \) should be chosen such that:

\[
\tau_{corr} \geq \frac{\overline{C}}{\lambda_2 - \lambda_1}.
\]

On the other hand, it should be smaller than the typical time to leave the well, \(\mathbb{E}(T_W) \). Since \(\mathbb{E}^\nu(T_W) = 1/\lambda_1 \), this typically implies the spectral gap requirement,

\[
\frac{\overline{C}}{\lambda_2 - \lambda_1} \leq \frac{1}{\lambda_1}.
\]
The Parallel Replica Algorithm: conclusions

This can be generalized to other dynamics (coarse-graining of kMC).

Main results:

- The QSD is a good intermediate between continuous state dynamics and kMC-like approximations.
- The error analysis holds whatever the partition. But the method requires metastability between the states to be computationally efficient.
- The parameter τ_{corr} should be adjusted in terms of the two first eigenvalues of the Fokker-Planck operator with absorbing boundary conditions.
References

