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Bistability in Rotating Tank Experiment

Transitions between blocked and zonal states

Weeks, Tian, Urbach, Ide, Swinney, Ghil, Science, 1997

• Strong analogy to weather regimes in the Earth’s atmosphere



Bistability in the VKS Experiment

Transitions in the polarization of the magnetic field

Berhanu et al. EPL, 2007

• Transition trajectories may be concentrated around a single
trajectory



Classical Bistability: Double-Well Potential

ẋ(t) = −dV

dx
+
√
kBTη(t)
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• Gradient system with a known energy landscape

• Arrhenius law for transition rate: k = A exp
(
− ∆V

kBT

)
Arrhenius 1889

• Turbulent flows do not fall into this framework

• Modern approaches include Freidlin–Wentzell theory
(mathematics) and path integrals and instantons (physics)



Aim of this Talk

• Large deviation of bistability in turbulent flows

• We study the 2D stochastic Navier-Stokes equations (simplest
turbulence model)

• Computation of instantons with a minimum action method

Differences to classical bistability phenomenon

• Non-gradient dynamics, connected steady states, unknown
steady states, complexity issues

• Diffusion across steady states may prevent rare transitions,
bistability and large deviation results



The 2D Stochastic Navier-Stokes Equations

∂ω

∂t
+ v · ∇ω = −αω + ν∆ω︸ ︷︷ ︸

Dissipation

+
√

2αη︸ ︷︷ ︸
Forcing

ω = (∇× v) · ez , v = ez ×∇ψ, ω = ∆ψ

• Stochastic white in time forcing:

〈η(x, t)η(x′, t ′)〉 = C (x− x′)δ(t − t ′)

• Doubly periodic domain D
• Consider the weak forcing and dissipation regime: ν � α� 1

• Timescale separation: τenergy = 1� 1/α = τdissipation



Leading Order Dynamics – The 2D Euler Equations

∂ω

∂t
+ v · ∇ω = 0

ω = (∇× v) · ez , v = ez ×∇ψ, ω = ∆ψ

• The 2D Euler equations have an
infinite number of steady states:
v · ∇ω = 0⇒ ω = f (ψ)

• The flow self-organizes and converges
toward steady states (attractors)

• Robert–Miller–Sommeria equilibrium statistical mechanics
predicts which states can be observed (what f (·) is selected)

Bouchet and Venaille, Physics Reports, 2012



Bistability in the 2D Stochastic Navier-Stokes Equations

Transitions between dipole and parallel flow states

• z1 =
∫
D ω(x, t) exp (iy)dx

Bouchet and Simonnet, PRL, 2009



The Onsager–Machlup Path Integral

The transition probability

Consider a transition from state ω0 to state ωT in time T :

P(ω0, 0;ωT ,T ) =

∫
D[ω]e−

1
2α
A(ω)

The action functional

A(ω) =
1

2

∫ T

0

∫
D

p(x, t)C−1(x− x′)p(x′, t) dx dx′ dt

p = ω̇ + v · ∇ω + αω − ν∆ω

• Any deterministic trajectory (p = 0) has zero action: A = 0



The Saddle-Point Approximation (α� 1)

Which trajectory maximizes the transition probability P?

P(ω0, 0;ωT ,T ) =

∫
D[ω]e−

1
2α
A(ω)

• The most probable transition trajectory minimizes A(ω):

ω∗ = arg min
{ω|ω(0)=ω0, ω(T )=ωT }

A(ω) The Instanton Trajectory



The Saddle-Point Approximation (α� 1)

Which trajectory maximizes the transition probability P?

P(ω0, 0;ωT ,T ) =

∫
D[ω]e−

1
2α
A(ω)

• The most probable transition trajectory minimizes A(ω):

ω∗ = arg min
{ω|ω(0)=ω0, ω(T )=ωT }

A(ω) The Instanton Trajectory

Large Deviation Principle (same as Freidlin–Wentzell)

lim
α→0
−α ln(P) = A(ω∗)



Exact Results: Large Deviations for Rare States

We can explicitly compute instantons for particular cases:

• White in space forcing: C (x− x′) = δ(x− x′)

• Parallel flows (flows with symmetry)

• States that are eigenmodes of the Laplacian

For the white noise case, we have the following large deviation
result:

Ps(ω) '
Z→∞

e−
1
2

∫
D ω2 dx

where Z = 1
2

∫
D ω

2 dx is the enstrophy and Ps = lim
T→∞

P



Non-Isolated Steady States Lead to Non-Standard Large
Deviations

Attractors of the 2D Euler equations (equilibrium)

• The 2D Euler equations contain non-isolated attractors

• Any steady state ω is connected to zero through a continuous
path of steady states: sω(st), 0 ≤ s ≤ 1

• Therefore, any two steady states, ω1 and ω2 can be connected
through a continuous path of steady states (attractors are
non-isolated)



Non-Isolated Steady States Lead to Non-Standard Large
Deviations

Attractors of the 2D Euler equations (equilibrium)

• The 2D Euler equations contain non-isolated attractors

• Any steady state ω is connected to zero through a continuous
path of steady states: sω(st), 0 ≤ s ≤ 1

• Therefore, any two steady states, ω1 and ω2 can be connected
through a continuous path of steady states (attractors are
non-isolated)

2D Navier-Stokes equations (non-equilibrium)

• Dynamics can slowly diffuse across steady states: τ ∼ 1/α

• For transitions between steady states: A(ω∗)→ 0 as α→ 0
Transition is not rare!

No large deviation and no bistability



The Importance of Degenerate Forcing

Strategy: If we can prevent diffusion across steady states, then
transitions between two steady states will become a rare event

Force Correlation:
〈
η(x, t)η(x′, t ′)

〉
= C (x− x′)δ(t − t ′)

• Definition: Ck =
∫
D C (x) exp(ik · x)dx, if Ck = 0 for some k,

the force is called degenerate, otherwise non-degenerate

• If the forcing is non-degenerate, the dynamics can diffuse
across continuous sets of steady states (A → 0)

Then there is no large deviation and no bistability

• What about if we set Ck = 0 at the largest scales (the scale of
the attractors)?

The transition at the largest scale will have to be excited via
nonlinear interactions
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Bistability with Degenerate Forcing

Bouchet and Simonnet, PRL, 2009

• z1 =
∫
D ω(x, t) exp (iy)dx

• Bistability becomes more
apparent as forcing becomes
more degenerate
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Numerical Computation of Instantons

• We implement a variational approach to determine the
instanton trajectory by minimizing A(ω) (minimum action
method) E, Ren, Vanden-Eijnden, 2004

• The initial and final states are fixed throughout the
minimization

• We iteratively minimize an initial guess, simultaneously over
space and time, in a descent direction dn:

ωn+1 = ωn + lndn

• Newton or quasi-Newton methods (BFGS) are too expensive
to implement

• We utilize a nonlinear conjugate gradient method with central
differencing scheme in time and pseudo-spectral in space



Numerical Instantons: Non-Degenerate vs. Degenerate

Transition between a parallel flow and dipole



Conclusions

• The 2D stochastic Navier-Stokes equations are a non-gradient
system with non-isolated steady states

• Because the set of attractors are connected, the classical
phenomenology may not hold

• Feasible to numerically compute instantons using a minimum
action method

• No bistability for non-degenerate forcing

• We have explicit large deviation predictions for rare stationary
probabilities


