
Second-law like inequalities for transitions   
between non-stationary states  

D. Lacoste

Laboratoire Physico-Chimie Théorique (PCT)Laboratoire Physico-Chimie Théorique (PCT)

ESPCI, Paris



Outline of the talk

I. Preliminaries on fluctuation theorems 

II. Modified Fluctuation-dissipation theorem off-equilibrium

III. Second-law like inequalities for transitions between non-stationary states

Acknowlegments:

G. Verley, ESPCI, Paris

R. Chétrite, Univ. Nice, France



Stochastic definition of work                                                      

• Average over non-equilibrium trajectories leads to equilibrium behavior :
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Jarzynski relation

This leads to a formulation of the second-law for macroscopic systems :

• Derivation using Feyman-Kac relation :
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Work like functional                                                where                                            

• Average over non-equilibrium trajectories leads to steady-state behavior

Hatano-Sasa relation

T. Hatano and S. Sasa, PRL 86, 3463 (2001)
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Now                             where the equality holds for a quasi-stationary process

• Initial condition in a non-equilibrium steady state (NESS)

• Expansion of the relation to first order in the perturbation leads to a modified FDT
near a NESS
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• In terms of an additive correction (the asymmetry) which vanishes at equilibrium

valid near any non-equilibrium state

• In terms of a local velocity/current

valid near any non-equilibrium state

M. Baiesi et al. (2009); E. Lippiello et al. (2005) 
G. Diezemann (2005); L. Cugliandolo et al. (1994)  

R. Chétrite et al. (2008); U. Seifert et al. (2006)  

II. The three routes to modified Fluctuation-dissipation theorems 
(MFDT)

•In terms of a new observable constructed from the non-equilibrium stationary distribution

valid near a NESS

Rk: in all 3 cases, markovian dynamics is assumed

J. Prost et al. (2009); 
G. Verley, K. Mallick, D. L., EPL 93, 10002 (2011)

Is it possible to extend the third route for a general 
observable and a general non-equilibrium state ? 



• Probability distribution ρt(c) solution of unperturbed master equation :

• Probability Pt(c,[ht]) has a functional dependence on a perturbation [ht], 
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Three relevant probability distributions

[ ]
[ ] [ ] [ ]

( , )
( ', ) ( ', ) ( , ') ( , ) ( ', ) ( ', )t t tt t h h h

P c h
w c c P c h w c c P c h P c h L c c

∂
 = − =∑ ∑

• Probability πt(c,h) defined for a constant time independent perturbation h,  

• Trajectory dependent quantity of interest constructed from πt(c,h) :
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• Model:                                               with                 and

• Response function is 

A particle obeying Langevin dynamics 
and submitted to a temperature quench 
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• Alternatively, one has

and thus for a constant protocol h

• Using this together with the MFDT, the same response is recovered
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Our work like path functional

The Feyman-Kac approach : 

Generalized Hatano-Sasa relation

Through linear expansion, one obtains for t>t’>0,
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• This generalized Hatano-Sasa relation does not require any thermodynamic 
structure nor stationary reference process 

• It contains a very general modified Fluctuation-dissipation theorem
which can be also obtained directly from linear response theory
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G. Verley, R. Chétrite, D. L., J.Stat. Mech., P10025 (2011)



• Stochastic trajectory entropy

o Distinct from Kolmogorov-Sinai entropy

o Distinct from 

o It can be decomposed into    
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Stochastic trajectory entropy 

-Reservoir entropy   + Total entropy production 
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• Consequence of this decomposition for MFDT: 

• Additive structure of the MFDT involving local currents:
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The 1D Ising model with Glauber dynamics 

• Classical model of coarsening : L Ising spins in 1D described by the hamiltonian

• System intially at equilibrium at             is quenched at time t=0 to a final temperature T. 
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• At the time t’>0, a magnetic field Hm is turned on:

• The dynamics is controlled by time-dependent (via Hm) Glauber rates 
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• Analytical verification : 

- MFDT can be verified although the distributions πt({σ},Hm) 
even for a zero magnetic field are not analytically calculable

- Analytical form of the response is known

• Numerical verification : the distributions πt({σ},Hm) can be obtained numerically for a small
system size (L=14); and the MFDT verified:

Integrated response function
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III.Inequalities generalizing the second law of thermodynamics 
for transitions between non-stationary states        

Particular case:Transitions between periodically driven states

o Vibrated granular medium
o Electric circuits
o Oscillations in biological systems 
o Manipulated colloids o Manipulated colloids 

Does a form of second law holds for such transitions ? 

G. Verley, R. Chétrite, D. L., Phys. Rev. Lett., 108, 120601 (2012)



The three faces of the second law

• Two different mechanisms to put a system into non-equilibrium state : 

- from the breaking of detailed balance via non-equilibrium boundary conditions
- from an external driving

• This leads to a splitting of the total entropy production into

where each part satisfies, each separately, a detailed and an integral FT:
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leading to a splitting of the second law into
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Is it possible to generalize this decomposition using a  
non-stationary distribution as reference ?



• Now Duality transformation (^) with respect to a non-stationary distribution :

• Second term is a difference of traffic between the direct and dual dynamics, 

Traffic is the time-integrated escape rate
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It is symmetric with respect to time-reversal:                                 unlike the entropy

• When and                 , the action A is called non-adiabatic :

• When                   and                 , the action A is called adiabatic :

similar but different from the 3FTs of
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• Fast relaxation of the accompagnying distribution towards a stationary distribution, 

then                and one recovers the 3 FTs. 

• For transitions between non-stationary states,  the generalized Hatano-Sasa relation follows
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• Modified second law (Clausius type inequality)• Modified second law (Clausius type inequality)

• Equality corresponds to the adiabatic limit (slow driving) :
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S. Vaikunanathan and C. Jarzynski (2009)

1 ( || )β −≥ eq

diss T T
W D p p

For an initial equilibrium state, 
« Dissipated work dictates the maximum extend 
to which equilibrium can be broken 
– equivalently the maximum amount of lag 
– at a given instant during the process. »

For an arbitrary non-stationary initial state, 
the lag between PT and πΤ distributions 
provides a bound for 
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Non-stationarity due to relaxation

• A reference dynamics is created by some initial conditions different from steady state values

• The model (with two states dynamics) is further driven

• Direct simulation of trajectories from which distributions           and of Y are obtained
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Non-stationarity from periodic driving

• A sinusoidally driven two states model is further perturbed using

As expected and 
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Conclusions

• A formalism based on fluctuation relations leads to a modified 
fluctuation-dissipation theorem and modified second law of 
thermodynamics off equilibrium. 

•Such a formalism could be useful for studying transitions between 
periodically driven states, or between states which are undergoing 
relaxation due to coarseing or aging.


