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Jarzynski relation

Stochastic definition of work W = IdT l.lf a—IZ (c,,h.)
0

* Average over non-equilibrium trajectories leads to equilibrium behavior :

< o PV > — o PAF C. Tarzynski, PRL 78, 2690 (1997)

This leads to a formulation of the second-law for macroscopic systems :

(W,)2(AF)
* Derivation using Feyman-Kac relation:  Hummer G and Szabo, PNAS 98, 3658 (2001)
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Hatano-Sasa relation

9

Work like functional Y, = IdThT c.,h.) where @(c,h)=—InP, (c,h)

* Average over nhon-equilibrium trajectories leads to steady-state behavior
<e_Yf > =1 T. Hatano and S. Sasa, PRL 86, 3463 (2001)

Now <Yt> >0  where the equality holds for a quasi-stationary process

* Initial condition in a non-equilibrium steady state (NESS)

 Expansion of the relation to first order in the perturbation leads to a modified FDT
near a NESS



IT. The three routes to modified Fluctuation-dissipation theorems
(MFDT)

* In terms of an additive correction (the asymmetry) which vanishes at equilibrium

. o M. Baiesi et al. (2009): E. Lippiello et al. (2005)
valid near any non-equilibrium state 6. Diezemann (2005); L. Cugliandolo et al. (1994)

* In terms of a local velocity/current

valid near any non-equilibrium state R Chétrite et al. (2008); U. Seifert et al. (2006)

In terms of a new observable constructed from the non-equilibrium stationary distribution

. J. Prost et al. (2009);
valid near a NESS 6. Verley, K. Mallick, D. L., EPL 93, 10002 (2011)

Rk: in all 3 cases, markovian dynamics is assumed

Is it possible to extend the third route for a general
observable and a general non-equilibrium state ?




Three relevant probability distributions

« Probability distribution p;(c) solution of unperturbed master equation :

apt (©) = Z[Wt (c, C),Ot (c ')_Wt (C,C'),Ot (C)] = Z’Of (¢ ')Lt (c,0)

ot
« Probability P;(c,[h;]) has a functional dependence on a perturbation [h,],

ag(g’r[ht]) =2 [ arE [hD-wl@ecR@[hD =2 R [A DL o)

« Probability m;(c,h) defined for a constant time independent perturbation h,

w =Y Wi om(c ) —w (c.c)mc.h) | =Yz h L (c' h)

* Trajectory dependent quantity of interest constructed from m,(c,h) :

%(Ct’ht) :_lnﬂ-t(ct’ht)



A particle obeying Langevin dynamics
and submitted to a temperature quench

t

* Model: )'c:—&xt+ﬁ+77t, with (17,) =0, and (77[77[,>=2—}735(t—t')

/4 /4
a<xt> 1 0.k
- Response function is R(t,t) = 3 e —eXp (—J' dT—T],
r h—0 r 7/
* Alternatively, one has 2
1 1 ¢ h 0.k
P(x,[h])=————exp| - x— dT—”exp[— dT'—”J :
(27057 20, ! y j y

and thus for a constant protocol h

2
1 1 h | ¢k,
%(x,h):(ﬁexp —Mz(x—yjdrexp(—jdf';jj ,
0 T

270, ) '

* Using this together with the MFDT, the same response is recovered



Our work like path functional Y =Id2'/zfahwf(cr,hr)
0

The Feyman-Kac approach : <At(ct,ht)e‘y>[h] = j derm(c,h)A (e,h) =(A (. 1)),

Generalized Hatano-Sasa relation <e_Y >[h] =1

Through linear expansion, one obtains for >t'>0,

a<AT(Cf’hf)>[h] d

R(,1)=——— - =—dt'<8hwt.(ct.,h)\h% A(c,.h))

3
h—0

* This generalized Hatano-Sasa relation does not require any thermodynamic
structure nor stationary reference process

« It contains a very general modified Fluctuation-dissipation theorem
which can be also obtained directly from linear response theory

G. Verley, R. Chétrite, D. L., J.Stat. Mech., P10025 (2011)




Stochastic trajectory entropy

- Stochastic trajectory entropy s, (c, [h]) =-Inz (c,,h)=w (c, h)
o Distinct from Kolmogorov-Sinai entropy
o Distinct from si(c,,[h])=—In p,(c,, ) U. Seifert PRL 95,040602 (2005)

o It can be decomposed info  -Reservoir entropy + Total entropy production

(o[ ID==As, (¢, [ R +As,, (c,.[ 1]

« Consequence of this decomposition for MFDT:

R, (t,1) =~ <a As(eo ] AG)) R, =t d < AL ] AC)
=<Jt.<ct.>A,<ct>> =<v,,<c,,>A<ct>>

* Additive structure of the MFDT involving local currents:

R(t,t)=((j.(c,)=V(c, DA(c,))



The 1D Ising model with Glauber dynamics

* Classical model of coarsening : L Ising spins in 1D described by the hamiltonian

L
H({O-}) = _JZO-IO-HI _Hmo-m’
i=1

« System intially at equilibrium at T = o is quenched at time t=0 to a final temperature T.

I I . A o I
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* At the time >0, a magnetic field H,, is turned on:

H (t)=H 6(t—t'),
* The dynamics is controlled by time-dependent (via H,,) Glauber rates

w' ({o}),{o}) :%(l_o-i tanh(ﬁ‘,((yi—l +O—i+1)+ﬁHm5im))’



* Analytical verification :

- MFDT can be verified although the distributions n,({c},H,,)
even for a zero magnetic field are not analytically calculable

- Analytical form of the response is known  C. Godréche et al. (2000)

* Numerical verification : the distributions m,({c} H,,) can be obtained numerically for a small
system size (L=14); and the MFDT verified:

t
Integrated response function JX,_,(¢,1) = JdTRn_m (¢,7)
!
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ITT.Inequalities generalizing the second law of thermodynamics
for fransitions between non-stationary states

Particular case: Transitions between periodically driven states

o Vibrated granular medium

o Electric circuits

o Oscillations in biological systems
o Manipulated colloids

Does a form of second law holds for such transitions ?

G. Verley, R. Chétrite, D. L., Phys. Rev. Lett., 108, 120601 (2012)



The three faces of the second law

* Two different mechanisms to put a system into non-equilibrium state :

- from the breaking of detailed balance via non-equilibrium boundary conditions
- from an external driving

* This leads to a splitting of the total entropy production into

AS, . =AS +AS M. Esposito et al., PRL 104, 090601 (2010)
where each part satisfies, each separately, a detailed and an integral FT:
P(AS
D ( tot) = €Xp (AS tot)
P(_AStot)
P(AS,, P(AS
— Bo) _ exp(AS,,) +( D _ exp(AS)
P (-AS, ) P (-AS))

leading to a splitting of the second law into <AS

tot

)20, (AS,)>0, (AS

na

) >0,

Is it possible to generalize this decomposition using a
non-stationary distribution as reference ?




* Now Duality transformation (™) with respect to a non-stationary distribution :
N
Wi (Ca c ') = ﬂ.t_l (C’ h) Wt (C '9 C) 7[; (C '9 h)

« Second term is a difference of traffic between the direct and dual dynamics,

A=) wi(c'o), C. Maes et al., PRL 96, 240601 (2006)
c#c'

Traffic is the time-integrated escape rate

AT[c]= }dz[zﬁ (c,) y (ct)} = —}dz(a, Inz)(c,h),

0

It is symmetric with respect to time-reversal: AT [c]= AT [E] , unlike the entropy

"\ _ (A N P[AA,]

«When ( )=(") and (' )=( ), the action A is called non-adiabatic: AA _=In= ,
P[-AA, ]

* When (~)= (") and (") =Id, the action A is called adiabatic : AB =In —AP[AB“] ,
P[-AB, |

similar but different from the 3FTs of



* Fast relaxation of the accompagnying distribution towards a stationary distribution,

then AT =0, and one recovers the 3 FTs.

* For ftransitions between non-stationary states, the generalized Hatano-Sasa relation follows
<exp(—Y )> =1,

* Modified second law (Clausius type inequality)

(ASYy2—(AS, )+(AT)  or  (Y)2—(AS,)=D(p, |l 7,)=0

* Equality corresponds to the adiabatic limit (slow driving) :

where <ASb>=O and AA =AT =0
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For an initial equilibrium state,

« Dissipated work dictates the maximum extend
to which equilibrium can be broken

- equivalently the maximum amount of lag

- at a given instant during the process. »

<W/diss> 2IB_ll)(pT ” p;q

S. Vaikunanathan and C. Jarzynski (2009)

For an arbitrary non-stationary initial state,
the lag between Py and i distributions
provides a bound for

(Y,)2D(p, I z,)20



Non-stationarity due to relaxation

* A reference dynamics is created by some initial conditions different from steady state values
* The model (with two states dynamics) is further driven
w" (a,b) =w(a,b)e™"*; w" (b,a) = w(b,a)e""

« Direct simulation of trajectories from which distributions In7, and of Y are obtained
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Non-stationarity from periodic driving

* A sinusoidally driven two states model is further perturbed using

Wh (a, b) _ w(a, b)e—h—sin(wbt) : wh, (b, a) — w( b, a) eh+sin(w0t)
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Conclusions

* A formalism based on fluctuation relations leads to a modified
fluctuation-dissipation theorem and modified second law of
thermodynamics of f equilibrium.

*Such a formalism could be useful for studying transitions between
periodically driven states, or between states which are undergoing
relaxation due to coarseing or aging.




