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Current fluctuations

• Current large deviations quantify asymptotic probability of rare fluctuations

•Microscopic and macroscopic approaches to calculation

•Most previous work for Markov systems...

•What happens if we add memory?
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Introduction: Memoryless systems

• Discrete-space, continuous-time Markov process

– Configurations σ(t)

– Transition rates wσ′,σ

– Non-equilibrium systems characterized by (time-integrated) currents Jt

– Typically have large deviation principle

Prob(Jt/t = j) ∼ e−Iw(j)t

• Toy example: Single particle hopping rightwards on an infinite lattice
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Iv(j)
– Let Jt count the number of jumps up to time t

– Large deviation function given by

Iv(j) = v − j + j ln
j

v



Introduction: Adding memory

•Many ways to introduce memory

•We consider current-dependent rates

• Class of processes where wσ′,σ depend explicitly on σ, σ′ and Jt/t

(To avoid singularities, assume initial time t0, where 0 ≪ t0 ≪ t)

• Includes analogues of “elephant random walk” [Schütz and Trimper ’04]

• Non-Markovian process but Markovian in joint current/configuration space

• Back to toy example:

v(j)

• How does memory effect the current large deviation principle?

(i.e., do we still have form Prob(Jt/t = j) ∼ e−Ĩ(j)t ?)



Temporal additivity principle

• Claim: [RJH and Touchette ’09]

Prob(Jt/t = j) ∼ exp

[

−min
j(τ)

∫ t

t0

Iw(j)(j + τj ′) dτ

]

where integral is minimized over all j(τ ) with j(t0) = j0 and j(t) = j

• General idea: Look for most probable path j(τ ) satisfying boundary conditions

• Temporal analogue of additivity principle of [Bodineau and Derrida ’04]



Temporal additivity principle

• To make t-dependence more explicit write

Prob(Jt/t = j) ∼ e−tαĨ(j),

If Ĩ(j) exists and is not everywhere zero then have large deviation principle with

Ĩ(j) = lim
t→∞

min
j(τ)

1

tα

∫ t

t0

Iw(j)(j + τj ′) dτ.

• If Markovian rate function is known, can find large deviation principle for system with

current-dependent rates by minimizing relevant integral

• But very few analytically solvable cases so...

– Toy example (random walk)

– Approximation (TASEP)

– Exact numerics (TASEP)



Toy example: Uni-directional random walk

v(j)

• Euler-Lagrange equation:
dv

dj
− j

dv/dj

v
− 2τj ′

j + τj ′
− τ 2j ′′

j + τj ′
= 0

• Consider case v(j) = aj (rate proportional to average velocity so far)

• Results depend on a:

– a > 1, escape regime: no large deviation principle

– a < 1, localized regime:

∗ System approaches state where particle has zero velocity

∗ Large deviation principle with “speed” t1−a

Prob(Jt/t = j) ∼ e−jta0 t
1−a

, for j > 0

∗ Transition from subdiffusive regime to superdiffusive regime at a = 1/2

Var[Jt] ∼ (t/t0)
2a



Fixed points, stability

•Mean current in memoryless case, given by j̄ = f(w)

• Fixed-point in current-dependent case at j∗ = f(w(j∗))

• Two possible scenarios:

j j
f(w(j))

f(w(j))

• Stability determined by slope

A∗ =
∂f

∂j

∣

∣

∣

∣

j=j∗

A∗ < 1 =⇒ stable A∗ > 1 =⇒ unstable



Expansion about fixed point

• Assume only one stable fixed point j∗

• Expanding to second order about this fixed point, E-L equations have solution

j(τ ) = j∗ +K1τ
−A∗

+K2τ
A∗−1

• ...fixing boundary conditions and integrating gives

Prob(Jt/t = j) ∼







exp
[

(1−2A∗)(j−j∗)2
2D∗ t

]

for A∗ < 1
2

exp
[

(2A∗−1)(j−j∗)2
2D∗ t2A

∗−1
0 t2−2A∗

]

for A∗ > 1
2

with

D∗ =

(

I ′′w(j)(j)
∣

∣

∣

j=j∗

)−1

• Transition at A∗ = 1
2

– For A∗ < 1
2 have diffusive behaviour with modified diffusion coefficient

– For A∗ > 1
2
have superdiffusive behaviour



Example 1: Totally Asymmetric Exclusion Process

α
β

•Well-known phase diagram (p = 1):
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• Current large deviations known in all phases [Lazarescu & Mallick ’11]...

...but can already get some information by expanding about fixed points



Current-dependent TASEP

α(j)
β

• Consider current-dependent input rate α(j)
• Fixed points given by

j∗ =



















1
4

for α(j∗) > 1
2
, β > 1

2

α(j∗)(1− α(j∗)) for α(j∗) < 1
2
, β > α(j∗)

β(1− β) for α(j∗) > β, β < 1
2

• For example, set α(j) = α0 + aj (with a > 0) [cf. Sharma & Chowdhury ’11]:

– Get modified phase diagram in (α0, β) plane

– LD–MC transition at α0 =
1
2 − a

4

– LD–HD transition at β =
−(1−a)+

√
(1−a)2+4aα0
2a .



Current-dependent TASEP, phase diagram

α(j) = α0 + aj
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Current-dependent TASEP, mean current
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• Fixed point j∗ determines mean current in different phases

• In LD phase have j∗ =
−(2α0a+1−a)+

√
(1−a)2+4α0a

2a2

• Simulation for β = 0.6, a = 0.8:
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Current-dependent TASEP, fluctuations
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• In LD phase, have A∗ = 1−
√

(1− a)2 + 4aα0

• Fluctuations superdiffusive for α0 < αc =
1/4−(1−a)2

4a

• Simulation for β = 0.6, a = 0.8, αc ≈ 0.066:
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Current-dependent TASEP, comparison with exact numerics

• L → ∞ limit for current fluctuations in low-density phase [Lazarescu & Mallick ’11]:

ew(λ) := − lim
t→∞

1

t
ln
〈

e−λJt
〉

= α(1− α)

(

1− e−λ

1− α + αe−λ

)

• Can Legendre transform this to get I(j) and then solve E-L equations numerically

• Comparison for α(j) = α0 + aj with α0 = 0.12:
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Fluctuation symmetry for current-dependent processes?

• Second-order expansion about fixed point yields

Prob(Jt/t = −j)

Prob(Jt/t = j)
∼







exp
[

−2(1−2A∗)j∗
D∗ × jt

]

for A∗ < 1
2

exp
[

−2(2A∗−1)j∗
D∗ t2A

∗−1
0 × jt2−2A∗

]

for A∗ > 1
2

• Cf. modified symmetry for anomalous dynamics found in [Chechkin & Klages ’09]

• Open question: does symmetry still hold in tails of distribution?

– Answer from structure of E-L equations?



Non-convex rate functions

• For ew(λ) non-differentiable, Legendre transform only yields convex envelope of Iw(j)

−ew(λ) Iw(j)

λ j

Iw(j) = supλ{ew(λ)− λj}

ew(λ) = infj{Iw(j) + λj}

• For short-range temporal correlations then system can phase separate in time...

– Gives straight-line section of rate function

• ...But not necessarily so for systems with memory/long-range temporal correlations

– Non-convex rate functions are possible

• Analogy: long-range spatial correlations in equilibrium give non-concave entropies

• Can we demonstrate explicitly, e.g., for zero-range process with current-dependence?



Summary and outlook

• General approach to current fluctuations in systems with memory-dependent rates

– “Temporal additivity principle”

– Expansion about fixed points

• For totally asymmetric exclusion process, with input rate α(j) = α0 + aj, predict

superdiffusive regime in phase diagram

• Long-range temporal correlations in non-equilibrium systems seem to have analogous

effects to long-range spatial correlations in equilibrium

–Modified speed (power of t) in current large deviation principle

– Possibility of non-convex rate function (e.g., in ZRP with bounded rates)

• Outlook:
–More work on fluctuation theorems for non-Markovian systems

– Hydrodynamic limit

– Intrinsically non-Markovian processes...



Harder problem

• Suppose rates at time t depend not on j(t) but on full history, i.e., j(τ ) for 0 ≤ τ ≤ t.

• Now have an intrinsically non-Markovian problem

• For example, take rates at time t which depend on j(t/2)

– cf. “Alzheimer random walk” [Cressoni et al. ’07, Kenkre ’07]

• In principle, can still use additivity-type approach but have to minimize non-local

integral...



Sketch of argument for temporal additivity principle

1. Divide interval [t0, t] into N subintervals of length ∆τ .

t0 t1 t2 tN−1 tN ≡ t

∆τ

2. Chapman-Kolmogorov equation for joint probabilities of being found in configuration

σi with average current ji:

p(jN , σN , t|j0, σ0, t0)
=

∑

j1,...,jN−1

σ1,...,σN−1

p(jN , σN , t|jN−1, σN−1, tN−1) · · · p(j2, σ2, t2|j1, σ1, t1)p(j1, σ1, t1|j0, σ0, t0)

3. If ∆τ ≫ 0, then assume p(jn+1, σn+1, tn+1|jn, σn, tn) independent of σn
(true for an ergodic system with finite state space)

p(jN , t|j0, t0) =
∑

j1,...,jN−1

p(jN , t|jN−1, tN−1) · · · p(j2, t2|j1, t1)p(j1, t1|j0, t0)



Sketch of argument for temporal additivity principle

4. Now take t and N large whilst preserving their ratio (so t ≫ ∆τ ≫ 0);

j(τ ) almost constant in each timeslice (adiabatic approx.)

5. Observed average current in timeslice (tn, tn+1] is

j
(n)
∆τ =

jn+1tn+1 − jntn
∆τ

6. So using Markovian large deviation principle have

p(jn+1, tn+1|jn, tn) ≈ Ane
−∆τIw(jn)(j

(n)
∆τ )

7. Putting all the slices together gives

p(jN , t|j0, t0) ≈ A
∑

j1,...,jN−1

e−
∑N−1

n=0 ∆τIw(jn)(j
(n)
∆τ ).

8. Then pass to continuum limit N, t,∆τ → ∞, jn → j(τ )

p(j, t|j0, t0) ∼
∫ j(t)=j

j(t0)=j0

D[j] e
−
∫ t
t0
Iw(j)(j+τj′) dτ



Sketch of argument for temporal additivity principle

9. In t → ∞ limit, path integral dominated by most probable path in j-space, so

Prob(Jt/t = j) ∼ exp

[

−min
j(τ)

∫ t

t0

Iw(j)(j + τj ′) dτ

]

where integral is minimized over all j(τ ) with j(t0) = j0 and j(t) = j

10. To make t-dependence more explicit write

Prob(Jt/t = j) ∼ e−tαĨ(j),

If Ĩ(j) exists and is not everywhere zero then have large deviation principle.

Ĩ(j) = lim
t→∞

min
j(τ)

1

tα

∫ t

t0

Iw(j)(j + τj ′) dτ.

If Markovian rate function is known, can find large deviation principle for system with

current-dependent rates by minimizing relevant integral...

• But very few analytically solvable examples...



Example: Zero-Range Process

• 1d open-boundary ZRP [Levine et al. ’05]:

1 2 3 4 5 L−1 L

α

δ

βwn

γwn pwn

pwnqwn

qwn

• No condensation if wn → ∞ as n → ∞
• Current rate function known in Markovian case

I(j) =
(p− q)[αβ(p/q)L−1 + γδ]

γ(p− q − β) + β(p− q + γ)(p/q)L−1
−

√

j2 +
4αβγδ(p/q)L−1(p− q)2

[γ(p− q − β) + β(p− q + γ)(p/q)L−1]2

− j ln

[

2αβ(p/q)L−1(p− q)

γ(p− q − β) + β(p− q + γ)(p/q)L−1

]

+ j ln

[

j +

√

j2 +
4αβγδ(p/q)L−1(p− q)2

[γ(p− q − β) + β(p− q + γ)(p/q)L−1]2

]

.

[RJH, Rákos and Schütz, ’05]



Current-dependent ZRP

• Choose current-dependent input rates

1 2 3 4 5 L−1 L

α(j)

δ(j)

βwn

γwn pwn

pwnqwn

qwn

• Solve Euler-Lagrange equations numerically with

α(j) = αea(j−jc) and δ(j) = δe−a(j−jc)

• For all values of a have fixed point at

j∗ = jc =
αβ − γδ

β + γ

• Numerical parameters: α = 1, b = 1.5, c = 1, d = 1, p = 1.1, q = 1, L = 5



Current-dependent ZRP, rate function

• Numerical solution beyond Gaussian regime:
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Current-dependent ZRP, fluctuation symmetry

• Test of fluctuation symmetry Ĩ(−j)− Ĩ(j) = Ej

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0  0.02  0.04  0.06  0.08  0.1  0.12  0.14  0.16  0.18

Ĩ
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Example: Bi-directional random walk with activity dependent rates

• Bi-directional random walk, count separately jumps to right and left so that

Qt = Q+,t −Q−,t

• Consider rates proportional to “activity”

a(q+ + q−)c(q+ + q−)

•Without loss of generality take a > c, i.e., drive to right

• For a + c < 1 there is a stationary state with

Prob(Qt/t = j) ∼
{

exp[−jta+c
0

(

a+c
a−c

)

t1−a−c] for j ≥ 0

exp[j(ln a
c)t + jta+c

0

(

a+c
a−c

)

t1−a−c] for j < 0.

• Leading term in exponent is different for currents in forward and backward directions



Example: Bi-directional random walk with activity dependent rates

Comparison with simulation:
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Example: Bi-directional random walk with activity dependent rates

•What about fluctuation symmetry?

• Since

Prob(Qt/t = j) ∼
{

exp[−jta+c
0

(

a+c
a−c

)

t1−a−c] for j ≥ 0

exp[j(ln a
c)t + jta+c

0

(

a+c
a−c

)

t1−a−c] for j < 0.

then

Prob(Qt/t = −j)

Prob(Qt/t = +j)
∼ exp

[

−j
(

ln
a

c

)

t
]

i.e., fluctuation theorem still holds

• Expected here since relative bias is constant vR/vL = a/c

(also holds for a + c > 1 when there is no stationary state)


