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Current fluctuations

e Current large deviations quantify asymptotic probability of rare fluctuations
e Microscopic and macroscopic approaches to calculation

e Most previous work for Markov systems...

e What happens if we add memory?




QOutline

e Introduction

e General approach for current-dependent rates
— “Temporal additivity principle”
[RJH and H. Touchette: J. Phys. A: Math. Theor. 42, 342001 (2009)]

x Toy example: random walk

— Expansion about fixed-points

e Applications to many-particle systems

— Example: Totally Asymmetric Simple Exclusion Process

* Modified phase diagram, (super-)diffusive fluctuations, simulation

x Comparison of approximation with exact numerics
— Fluctuation symmetry for current-dependent processes?

— Non-convex rate functions

e Summary and outlook



Introduction: Memoryless systems

e Discrete-space, continuous-time Markov process

— Configurations o ()
— Transition rates w, ,
— Non-equilibrium systems characterized by (time-integrated) currents 7;

— Typically have large deviation principle

Prob(J;/t = j) ~ e Twli)t

e Toy example: Single particle hopping rightwards on an infinite lattice
v

0"

— Let J; count the number of jumps up to time ¢

— Large deviation function given by

L(j)=v—j+jn;




Introduction: Adding memory

e Many ways to introduce memory
e We consider current-dependent rates

e Class of processes where w, , depend explicitly on o, ¢’ and J;/t

(To avoid singularities, assume initial time ¢;, where (0 < ¢, < t)
e Includes analogues of “elephant random walk” [Schiitz and Trimper '04]

e Non-Markovian process but Markovian in joint current/configuration space

e Back to toy example:

e How does memory effect the current large deviation principle?
(i.e., do we still have form Prob(7;/t = j) ~ e~ 1)t ?)



Temporal additivity principle

e Claim: [RJH and Touchette '09]

J(7)

/
Prob(J;/t = j) ~ exp [— min/ Iw(j)(j + 77" dT]
to

where integral is minimized over all j(7) with j(ty) = jo and j(t) = j

e General idea: Look for most probable path j(7) satisfying boundary conditions

e Temporal analogue of additivity principle of [Bodineau and Derrida '04]



Temporal additivity principle

e To make t-dependence more explicit write

Prob(J,/t = j) ~ e 10,

If 1(j) exists and is not everywhere zero then have large deviation principle with

_ 1 [t
I(j) = lim min— [ I, (j+75)dr.

t—0o0 j(7) e to

e /[f Markovian rate function is known, can find large deviation principle for system with

current-dependent rates by minimizing relevant integral

e But very few analytically solvable cases so...

— Toy example (random walk)
— Approximation (TASEP)
— Exact numerics (TASEP)



Toy example: Uni-directional random walk

e Euler-Lagrange equation:
dv  .dv/dj 277 " 0
G v 4t 41l

e Consider case v(j) = aj (rate proportional to average velocity so far)
e Results depend on a:

—a > 1, escape regime: no large deviation principle

—a < 1, localized regime:

* System approaches state where particle has zero velocity

s Large deviation principle with “speed” ¢!~¢
Prob(J;/t = j) ~ e 0" for j >0
* Transition from subdiffusive regime to superdiffusive regime at a = 1/2

Var[ 7] ~ (t/ty)*



Fixed points, stability

e Mean current in memoryless case, given by 7 = f(w)
e Fixed-point in current-dependent case at j* = f(w(j*))

e Two possible scenarios:

flw(j))

e Stability determined by slope
4 9f

07 | _

J=J

A" <1 = stable A*" > 1 = unstable



Expansion about fixed point

e Assume only one stable fixed point j*
e Expanding to second order about this fixed point, E-L equations have solution

](7’) — ]* -+ KlT_A* -+ KQTA*_l

e ...fixing boundary conditions and integrating gives

e[ ey
ro it =7) ~ = . . .
exp (24 —211))(3—] )2Ing _1t2_2A ] for A* > %

with

—1
j=j*)

—For A* < % have diffusive behaviour with modified diffusion coefficient

D = (I;;mm

e Transition at A* = %

— For A* > % have superdiffusive behaviour



Example 1: Totally Asymmetric Exclusion Process

e
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e Current large deviations known in all phases [Lazarescu & Mallick "11]

but can already get some information by expanding about fixed points



Current-dependent TASEP

\g(ﬁ B . /ﬁ

e Consider current-dependent input rate o)

e Fixed points given by

for a(j*) > 3,6 > 3

J = a1 —a(gr) fora(ff) < 3.8 > alj)
51— p) for a(j*) > B, < 3

T

\

e For example, set a(j) = o + aj (with @ > 0) [cf. Sharma & Chowdhury '11]:

— Get modified phase diagram in («, 8) plane

— LD-MC transition at oy = % 1

—(1—a)—|—\/(1—a)2—|—4a040
2a :

— LD-HD transition at 5 =



Current-dependent TASEP, phase diagram
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Current-dependent TASEP, mean current

e Fixed point j* determines mean current in different phases

e In LD phase have j* =
e Simulation for 8 = 0.6, a = 0.8:
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Current-dependent TASEP, fluctuations

e In LD phase, have A* =1 — /(1 — a)? + 4aay

1/4—(1—a)?

e Fluctuations superdiffusive for oy < . = 1

e Simulation for 8 = 0.6, a = 0.8, a, =~ 0.066:
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Current-dependent TASEP, comparison with exact numerics

e [, — oo limit for current fluctuations in low-density phase [Lazarescu & Mallick "11]:

ew(A) = — lim %hl (M) = a1 — a) ( 1 — e )

500 1 —a+ae?

e Can Legendre transform this to get I(j) and then solve E-L equations numerically

e Comparison for a(j) = o + aj with oy = 0.12:
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Fluctuation symmetry for current-dependent processes?

e Second-order expansion about fixed point yields

i _9A*) ¥ . .
Prob<%/t — _]> exp -_2(1 12)* )J X ]t] for A* < %
Prob(J/t = j) exp —Q(QAgll)j*tgA*_l X jt2_2‘4*] for A* > %

e Cf. modified symmetry for anomalous dynamics found in [Chechkin & Klages '09]

e Open question: does symmetry still hold in tails of distribution?

— Answer from structure of E-L equations?



Non-convex rate functions

e For ¢, () non-differentiable, Legendre transform only yields convex envelope of 1,,(7)

I,(j) = supy{ew(A) — Aj}

RN
\_/

€w<)‘> = infj{]w(]) + /\]}

A ]

e For short-range temporal correlations then system can phase separate in time...
— Gives straight-line section of rate function

e ...But not necessarily so for systems with memory/long-range temporal correlations
— Non-convex rate functions are possible

e Analogy: long-range spatial correlations in equilibrium give non-concave entropies

e Can we demonstrate explicitly, e.g., for zero-range process with current-dependence?



Summary and outlook

e General approach to current fluctuations in systems with memory-dependent rates

— “Temporal additivity principle”

— Expansion about fixed points

e For totally asymmetric exclusion process, with input rate a(j) = ay + aj, predict

superdiffusive regime in phase diagram
e Long-range temporal correlations in non-equilibrium systems seem to have analogous
effects to long-range spatial correlations in equilibrium

— Modified speed (power of t) in current large deviation principle

— Possibility of non-convex rate function (e.g., in ZRP with bounded rates)

e Outlook:
— More work on fluctuation theorems for non-Markovian systems
— Hydrodynamic limit

— Intrinsically non-Markovian processes...



Harder problem

e Suppose rates at time ¢ depend not on j(¢) but on full history, i.e., j(7) for0 < 7 < t.
e Now have an intrinsically non-Markovian problem
e For example, take rates at time ¢ which depend on j(t/2)

— cf. “Alzheimer random walk” [Cressoni et al. '07, Kenkre '07]

e In principle, can still use additivity-type approach but have to minimize non-local

integral...



Sketch of argument for temporal additivity principle

1. Divide interval [ty,t] into N subintervals of length Ar.

to tl t2 tN—l tN =1

2. Chapman-Kolmogorov equation for joint probabilities of being found in configuration

o; with average current j;:

p(jNJO_NJt‘j())O_O)tO)
Z p(]Na ON, t|jN—17 ON-1, tN—l) T 'p(]éa O-QatQ‘jl) 01, t1>p(j17 01, t1|j07 00, tO)

J1r-JN—1
01,0 N—1

3. 1f A7 > 0, then assume p(jns1, Oni1, tnitlin, On, tn) independent of o,

(true for an ergodic system with finite state space)

p(ins tljo, to) = Z PN, tIN-1,tn-1) - P(Ja, L2l g1, T1)p(J1s E1] o, o)

Il IN—1



Sketch of argument for temporal additivity principle

4. Now take ¢t and N large whilst preserving their ratio (so t > A1 > 0);

7(7) almost constant in each timeslice (adiabatic approx.)
5. Observed average current in timeslice (¢,,t,41] is
(n) jn+1tn+1 — ]ntn

Jar = AT
6. So using Markovian large deviation principle have

(n)
] ; A
P(Jnt1, bttt |dn, tn) = Ape Lujn)Uar)

7. Putting all the slices together gives

N— (n)
PG tloto) = A e At Uao),

J1y-JN—-1
8. Then pass to continuum limit N, ¢, AT — oo, j, — j(7)

o it)=j
p(7, t|jo, to) ~ /

J(to)=Jo

D] e Jio Tutn G+7) dr



Sketch of argument for temporal additivity principle

9.In t — oo limit, path integral dominated by most probable path in j-space, so
t
Prob(J;/t = j) ~ exp [— 11%1151/ Loj(J+77) dT]

where integral is minimized over all j(7) with j(¢y) = jo and j(t) = j
10. To make t-dependence more explicit write

Prob(J;/t = j) ~ e 1),

~

If I(7) exists and is not everywhere zero then have large deviation principle.
- 1 [t

. L o . T ’ . ./
I(7) = lim ming ), Ly(j +77)dr.

If Markovian rate function is known, can find large deviation principle for system with

current-dependent rates by minimizing relevant integral...

e But very few analytically solvable examples...



Example: Zero-Range Process

e 1d open-boundary ZRP [Levine et al. '05]:

)
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Arava
YWnp pwy,
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4

e No condensation if w,, — 00 as n — o0
e Current rate function known in Markovian case

(0~ @loBp/)) " +70] \/j2 L Aapys(p/a)t (b~ q)
Yip—q—B)+Bp—qa+7)(p/¢)"! [v(p—q—B)+Bp—q+7)(p/e)F 1

208(p/a)" 1 (p—q) it \/j2 N 4apyi(p/q)t—p — q)?
Y(p—q—0B)+Bp—qa+7)(p/q)F! Yp—q—8)+B—q+7) /O]

[RJH, Rékos and Schiitz, '05]

1(j) =

—j1ln

}—i-jln



Current-dependent ZRP

e Choose current-dependent input rates

a(j)
quwn, pwn

e Solve Euler-Lagrange equations numerically with
a(j) = ae®UIe) and 5(j) = de 2—de)

e For all values of a have fixed point at

J = Jc—=
B+

e Numerical parameters: a=1,b=15,c=1,d=1,p=11,q=1, L =5



Current-dependent ZRP,

rate function

e Numerical solution beyond Gaussian regime:
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Current-dependent ZRP, fluctuation symmetry

~

o Test of fluctuation symmetry I(—75) — I1(j) = Ej
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Example: Bi-directional random walk with activity dependent rates

e Bi-directional random walk, count separately jumps to right and left so that
Q=0Q,:—Q

e Consider rates proportional to “activity”

c(qy +q-) a(qs +q-)

"o

e Without loss of generality take a > ¢, i.e., drive to right

e For a + ¢ < 1 there is a stationary state with

el ) e orj 2
Prob(Q;/t = j) ~ (Ip @) 4 gt (ate) pl-a—c for i < 0
eXP[]< Il c) - Jlo <a—c) ] orj<Vu.

e Leading term in exponent is different for currents in forward and backward directions



Example: Bi-directional random walk with activity dependent rates

Comparison with simulation:

0.16 I I | | | T T
2.5
+
0.14 "—+ :@ 2.0 . + . _
e
. ; 15 Lt
0.12 = . il
= 1.0 F +
+ E .
-+~ | — 05 - ]
= 0.0 ' ' ' o
Lo + 0.00 0.05 0.10 0.15 0.20
008 . ; B
& + J +
- +
—, N
| 0.06 + 4
+ N -
+
0.04 X B ’ XX X X =
S
. XXX +
N XX
0.02 N .
%S
X
0.00 ! ! !
-0.10 -0.05 0.00 0.05 0.10 0.15 0.20 0.25 0.30

J



Example: Bi-directional random walk with activity dependent rates

e What about fluctuation symmetry?

e Since
, exp|—jtiTe (&) ¢t for 4 >0
PrOb(Qt/t — ]> ~ [ - Oa < ')a+c a+c] l—a—c '
explj(In )¢ + jtg+e (49) ¢ | for 7 < 0.
then

rob(Q;/t = —j (a
e ~ oo [ ()]

I.e., fluctuation theorem still holds

e Expected here since relative bias is constant vp /v, = a/c

(also holds for a + ¢ > 1 when there is no stationary state)



