
FINITE TIME STOCHASTIC THERMODYNAMICS
AND OPTIMAL MASS TRANSPORT

Krzysztof Gawedzki, Lyon, June 2012

”Time is the longest distance between two places”

Tennessee Williams, “The Glass Menagerie”

Stochastic Thermodynamics :

• In classical version it describes dynamics of mesoscopic systems
(colloids, polymers, biomolecules, etc.) in contact with heat bath(s)
modeled by random noise

• Subject with long history starting with Einstein, Smoluchowski,
Langevin

• More recently revived in the context of theoretical study of
fluctuation relations: Kurchan, Lebowitz-Spohn, Jarzynski,

Crooks, Sekimoto, Hatano, Sasa, Maes, Seifert, . . .



• A simple set-up for studying interplay between thermodynamical

and statistical concepts away from equilibrium

• In quantum version it uses Markovian modelization of the dynamics

of open nanoscopic systems

• Lends itself to experimental verifications, e.g. in experiments by

Stuttgart (Bechinger), Lyon (Ciliberto), Barcelone (Ritort),

Berkeley (Bustamante), Notre Dame (Orlov), . . . groups

The simplest classical model: overdamped Langevin equation

dx
dt

= −M∇U(t,x) + η(t)

with constant mobility matrix M = (M ij) > 0 and the white noise

〈
ηi(s) ηj(t)

〉
= 2 kBT M ij δ(s− t)

↖
Einstein relation



1st Law of Stochastic Thermodynamics

• fluctuating work performed in time interval [0, tf ] :

W =

∫ tf

0
∂tU(t,x(t)) dt

• fluctuating heat dissipation:

Q = −
∫ tf

0
∂iU(t,x(t)) ◦ dxi(t)

(with ”◦” marking the Stratonovich convention)

W − Q = U(tf ,x(tf )) − U(0,x(0)) ≡ ∆U

holds trajectory-wise, not only for the means ! (Sekimoto 1998)



2nd Law of Stochastic Thermodynamics

The probability density

ρ(t,x) =
〈
δ(x− x(t))

〉
≡ exp

[
−

R(t,x)

kBT

]

evolves according to the Fokker-Planck equation that may be written as

the advection equation

∂tρ + ∇ · (ρv) = 0

in the current velocity field (Nelson 1967)

v(t,x) =

〈
δ(x− x(t)) ◦ dx

dt (t)
〉

ρ(t,x)
= M∇(R− U)

(again with the Stratonovich convention)



2nd Law of Stochastic Thermodynamics (cont’d)

• The fluctuating instantaneous entropy of the system is

Ssys(t) = − kB ln ρ(t,x(t)) =
1

T
R(t,x(t))

with the mean given by the Gibbs-Shannon formula

〈
Ssys(t)

〉
= − kB

∫
ρ(t,x) ln ρ(t,x) dx

and the change along the trajectory

∆Ssys ≡ Ssys(tf )− Ssys(0) =
1

T

∫ tf

0

d
dt

R(t,x(t)) dt

• The change of entropy of the system is accompanied by the change

of entropy of the thermal environment given by the thermodynamical
relation

∆Senv =
Q

T
= −

1

T

∫ tf

0
∂iU(t,x(t)) ◦ dxi(t)



2nd Law of Stochastic Thermodynamics (cont’d)

• The total change of fluctuating entropy

∆Stot = ∆Ssys + ∆Senv

satisfies the Jarzynski-type equality (one of Fluctuation Relations)

〈
e−∆Stot/kB

〉
= 1 (Seifert 2005)

(an easy exercise based on Girsanov and Feynman-Kac formulae)

implying by the Jensen inequality the 2nd Law stating that

〈
∆Stot

〉
≥ 0

that also follows by a direct calculation giving

〈
∆Stot

〉
=

1

T

∫ tf

0
dt

∫
v(t,x) ·M−1 v(t,x) ρ(t,x) dx



Landauer Principle (IBM Journal of Res. and Dev. 5:3 (1961))

Erasure of one bit of memory in a computation in thermal environ-

ment requires dissipation of at least kBT ln 2 of heat (in mean)

Model: overdamped Langevin evolution from from the initial state

ρi =
1
Zi

e
−Ri(x)

kBT to the final state ρf = 1
Zf

e
−

Rf (x)

kBT with

ρi (red) and ρf (blue) Ri (red) and Rf (blue)



• at the initial time t = 0, x(0) is either in the left or in the right

potential well (1 bit of information)

• at the final time t = tf , x(tf ) is in the right potential well with

no memory of where it started

• The Landauer bound

〈
Q

〉
≥ kBT ln 2

is implied by the 2nd Law rewritten as the bound

〈
Q

〉
≥ −T

〈
∆Ssys

〉

since here

〈
∆Ssys

〉
≈ − kB ln 1 + 2 kB (ln

1

2
)
1

2
= − kB ln 2



Finite-time Thermodynamics

• The 2nd Law & Landauer bounds are saturated in quasi-stationary

processes that take infinite time (if ρi &= ρf )

• In computation, one wants to minimize dissipated heat but also to go fast

• This gives rise to the question:

Given ρi, ρf and the length tf of the time

window, what is the minimal
〈
∆Stot

〉
?

• Problems studies in the thermal engineering theory from the 50’ by

Novikov, Chambadal, Curzon-Ahlborn, . . . , and, after the first

oil crisis, by Berry, Salamon, Andresen . . . who coined the name

of Finite-Time Thermodynamics

• In the context of Stochastic Thermodynamics, they were first

addressed by Schmiedl-Seifert in 2007 for Gaussian processes



Main result: Aurell-Mej̀ıa-Monasterio-Muratore-Ginanneschi (2011),

Aurell-G.-Mej̀ıa-Monasterio-Mohayaee-Muratore-Ginanneschi (2012)

For fixed ρi, ρf , tf but otherwise arbitray control potentials U(t,x),

〈
∆Stot

〉
min

=
1

tfT
Kmin

where Kmin = min K[xf (·)] over maps xi '→ xf (xi) carring ρi to ρf ,
i.e. such that ρi(xi)dxi = ρf (xf )dxf , of the quadratic cost function

K[xf (·)] =

∫
(xf (xi)− xi) ·M−1 (xf (xi)− xi) ρi(xi) dxi

• Minimization of K[xf (·)] over the maps xi '→ xf (xi) that transport

ρi to ρf is the celebrated Monge (1781) - Kantorovich (1942)

Optimal Mass Transport Problem





Proof. A corollary of the result of Benamou-Brenier (1997)

relating the optimal mass transport to the Burgers equation

• Benamou-Brenier minimize the functional

A[ρ,v] =

∫ tf

0
dt

∫
(v ·M−1v)(t,x) ρ(t,x) dx

over densities ρ(t,x) and velocity fields v(t,x) satisfying

advection equation ∂tρ+∇ · (ρv) = 0 and such that

ρ(0,x) = ρi(x) , ρ(tf ,x) = ρf (x)

• The advection equation with the above initial conditions is solved by

ρ(t,x) =

∫
δ(x− x(t;xi)) ρi(xi) dxi

for the Lagrangian flow of v(t,x)

dx
dt

(t;xi) = v(t,x(t;xi)) , x(0;xi) = xi



• Inserting this solution to the expression for A gives:

A[ρ,v] =

∫ tf

0
dt

∫ ( dx
dt

·M−1 dx
dt

)
(t;xi) ρi(t,xi) dxi

• Minimizing first over the curves [0, tf ] ) t '→ x(t;xi) keeping

x(tf ;xi) = xf (xi) fixed, with the minima attained on straight lines

x(t;xi) = xi +
t
tf

(
xf (xi)− xi

)
≡ xlin(t;xi) ,

with dx
dt (t,xi) =

xf (xi)−xi

tf
one reduces the minimization of A to

the optimal mass transport problem considered before:

Amin =
1

tf
Kmin



• The map xi '→ xf (xi) that minimizes the quadratic cost function

is of the gradient type:

xf (xi) = M ·∇F (xi)

for a convex function F

• The velocity field v minimizing A has the linear Lagrangian flow

xlin(t;xi) , and, as such, satisfies the inviscid Burgers equation

∂tv + (v ·∇)v = 0 ,

• It is necessarily also of the gradient type !

v(t,x) = M∇Ψ(t,x)

where Ψ satisfies

∂tΨ +
1

2
∇Ψ ·M∇Ψ = 0



• It follows that v = M∇Ψ minimizing A is the current velocity

= M∇(R− U) for the overdamped Langevin process such that

U(t,x) = R(t,x)−Ψ(t,x)

for

R(t,x) = −kBT ln

∫
δ(x− xlin

f (t;xi)) ρi(xi) dxi

• Since 〈
∆Stot

〉
=

1

T
A[ρ,v]

for v = M∇(R− U), we conclude that

〈
∆Stot

〉
min

=
1

T
Amin =

1

tfT
Kmin

even if, a priori, A was minimized without assuming the gradient

form of v

• The optimal protocol U(t,x) is given by the formulae on the top !



Geometric interpretation à la Jordan-Kinderlehrer-Otto (1998)

• Kmin is the square of the Wasserstein distance dW(ρi, ρf )
corresponding to the formal Riemannian metric

‖∂tρ‖2W =

∫
(∂tρ) (−∇ · ρM∇)−1(∂tρ) dx

on the space of densities ρ

• The Fokker-Planck equation describes the gradient flow corresponding

to the free energy functional

Ft[ρ] =

∫
U(t,x) ρ(x) dx + kBT

∫
ρ(x) ln ρ(x) dx

• One has
〈
∆Stot

〉
=

1

T

∫ tf

0
‖∂tρ(t, ·)‖2W dt ≥

1

tfT
dW(ρi, ρf )

2

• Optimal protocol gives the (shortest) geodesics joining ρi to ρf



Corollary (Finite-time refinement of the 2nd Law)

• For overdamped Langevin process evolving in time interval [0, tt]

with the initial probability density ρi and the final one ρf

〈
∆Stot

〉
=

〈
∆Ssys

〉
+

1

T

〈
∆Q

〉
≥

1

tfT
Kmin ≥ 0

with the left lower bound saturated by the protocol with U = R−Ψ

• Equivalently

〈
Q

〉
≥ −T

〈
∆Ssys

〉
+

1

tf
Kmin

and for
〈
∆Ssys

〉
= −kB ln 2 we obtain a finite time refinement

of the Landauer Principle



Remarks

• The minimal cost Kmin is independent of the time window so that〈
∆Stot

〉
min

is inversely proportional to its length tf

• For the optimal transport map xi '→ xf (xi) = M∇F (xi),
function F satisfies the Monge-Ampère equation

ρf (M∇F (xi)) det
(
M∇∇F (xi)

)
= ρi(x)

• For the optimal protocol U(t,x) and x = xlin(t;xi) ,

∇(R− U)(t,x) = ∇Ψ(t,x) = M−1 xf (xi)− xi

tf
so that if ρi &= ρf then for no times in [0, tf ] the densities ρ(t,x)

coincide with the Gibbsian ones for the control potentials U(t,x)

• In particular, the potential has to jump at the initial time if ρi was

prepared by long evolution in a time-independent potential !



Remarks (cont’d)

• The optimal map xi '→ xf (xi) may be approximated by optimal

permutations π assigning to N points xi,n , distributed with density

ρi , N points xf,n , distributed with density ρf , in a way

minimizing the quadratic cost function

1

N

N∑

n=1

(xf,π(n) − xi,n)M
−1(xf,π(n) − xi,n) ≡ KN

and the optimal π may be found by an Auction Algorithm based

on the steepest descend with polynomially growing time ∝ Nγ , γ ≈ 2.3

• The numerical algorithms are not very efficient in regions where

the densities are very small - when the latter are not strictly positive,

the optimal transport map may be discontinuous



Remarks (cont’d)

• In one dimension, the optimal map xi '→ xf (xi) may be found from

the equation

xf (xi)∫

−∞

ρf (x) dx =

xi∫

−∞

ρi(x) dx

• Numerically, the optimal assignment between xi,n and xf,n may

be found by sorting both 1D sequences in increasing order

• If Ri and Rf are polynomials of the same even degree then

xf (xi)− xi may be expanded in powers of x−1
i for large |xi|



Experiment-Motivated Example

• Consider the memory erasure 1D example where the initial bimodal

distribution evolves to its right branch with

ρi(x) =
1

Zi
exp

[
− A

kBT
(x2 − α2)2

]

ρf (x) =
1
Zf

exp
[
− A

kBT
(x− α)2((x− α)2 + 3α(x− α) + 4α2)

]

for A = 112 kBT µm−4, α = 0.5µm, and x expressed in µm’s



• Numerical simulations combined with asymptotic expansion give for

for the transport map xi → xf (xi), its asymptote and its derivative:



• Initial, half-time, and final Gibbs potentials R and control potentials U

for tf = 10s (left) and tf = 1s (right) are:

• Heat dissipation exceeds the Landauer bound by less than 40% for

tf = 10s and almost 4 times for tf = 1s



• The optimal ˙current velocities describe nascent shocks:

• The model describes an experimental situation where a 2µm colloidal

particle is manipulated by laser tweezers to verify the Landauer bound

(Bérut-Arakelyan1-Petrosyan-Ciliberto-Dillenschneider-Lutz

Nature 483 (2012), 187-189)



• The ad hoc experimental protocol, that will be improved, needed twice

more time to descend to the same heat release as the optimal protocol

(for tf = 10s the released heat exceeded the Landauer bound

∼ 2.5 times rather than by 40%)



Generalizations

• The above refinement of the 2nd Law still holds for the general

overdamped Langevin evolution with non-conservative

forces f &= ∇U if

Q =

∫ tf

0
fi(t,x(t)) ◦ dxi(t)

but for the optimal protocol f = ∇U

• If the mobility matrix M depends on x similar results hold with

the quadratic form (y − x) ·M−1(y − x) in the cost fuction replaced

by the distance squared d(x, y)2 in the Riemannian metric

g = (dx) ·M(x)−1(dx)

(optimal transport with such a cost function was used by Lott-Villani

to prove results in Riemannian geometry)



• In the N → ∞ mean field limit of the N -particle overdamped

Langevin dynamics

dxn

dt
= −M

(
∇U(t,xn) +

N∑

m=1

1

N
∇V (xn − xm)

)
+ ηn(t)

with i.i.d. white noises ηn going between factorized states ⊗n ρi
and ⊗n ρf during time tf , the total entropy production

per particle satisfies the same lower bound as before

• The mean-field dynamics keeps the factorized form ⊗n ρ of the state

with ρ evolving via the nonlinear Fokker-Planck equation

∂tρ + ∇ · (ρ v) = 0 v = M∇(R− U − V ∗ ρ)for

• The optimal control U(t,x) satisfies here the relation

U(t,x) = R(t,x) −
∫

V (x− y) ρ(t,y) dy − Ψ(t,x)

with ρ, R, Ψ given as before by the optimal transport map



Quantum Stochastic Thermodynamics

• For the quantum Markovian evolution

d
dt

ρ(t) = L(t)ρ(t)

where L(t) is the time-dependent Lindblad super-operator

Lρ = −i[K,ρ] +
∑

i

τi
(
LiρL

∗
i − 1

2
L∗
iLiρ− 1

2
ρL∗

iLi
)

such that L(t)ρth(t) = 0 for ρth(t) =
1

Z(t) e
− H(t)

kBT one has

Ssys(t) = −kB ln ρ(t) ,
〈
Ssys(t)

〉
= −kB tr ρ(t) ln ρ(t)

∆Senv =
1

T

∫ tf

0
L(t)†H(t) dt ≡

Q

T

↖
von Neumann

entropy

• The 2nd Law takes the form

〈
∆Stot

〉
=

〈
∆Ssys + ∆Senv

〉
≥ 0



• One may again inquire about the minimum over some reasonable

subclasses of time-dependent Markovian evolutions of
〈
∆Stot

〉
,

given ρi, ρf and tf

• No general results available but a related problem of work minimization

was studied for a model of single level quantum dot (a qubit) in

Esposito-Kawai-Lindenberg-Van den Broeck: EPL 89 (2010)

• The Hilbert space of states of the dot is spanned by |0〉 (no electron)

and |1〉 (one electron) and the Lindbladian obtained in the limit

of weak coupling between the dot and the lead electrons corresponds to

K = e0|0〉〈0|+ e1|1〉〈1| L1 = |0〉〈1| L2 = |1〉〈0|

τ1 =
γ0

e
− ε−µ

kBT + 1
, τ2 =

γ0

e
ε−µ
kBT + 1

where ε(t) is the energy of the single level of the dot and µ is

the chemical potential of lead electrons



• The thermal Gibbs state such that Lρth = 0 corresponds to

the Hamiltonian

H = µ |0〉〈0|+ ε |1〉〈1|

(in general K &= H but [K,H] = 0)

• Similar model but with

τ1 =
γ0

1− e
− !ω

kBT

, τ2 =
γ0

e
!ω

kBT − 1
describes a 2-level atom in weak interaction with radiation where !ω > 0

is the resonant photon energy

• It is convenient to describe the 2-dimensional density matrices

of a qubit by the Bloch vectors )v with |)v| ≤ 1

ρ =
1

2

(
1 + )v · )σ

)
=

1

2

(
1+v3 v1−iv2

v1+iv2 1−v3

)

with unit vectors corresponding to pure states



• In terms of Bloch vectors, the dynamics takes the form

v̇1 = (e0 − e1)v
2 − 1

2
(τ1 + τ2)v

1

v̇2 = −(e0 − e1)v
1 − 1

2
(τ1 + τ2)v

2

v̇3 = −(τ1 + τ2)v
3 − τ1 + τ2

with

〈
∆Ssys

〉
=

[
− 1+|#v|

2
ln

( 1+|#v|
2

)
− 1−|#v|

2
ln

( 1−|#v|
2

) ]t=tf

t=0

〈
∆Senv

〉
=

1

2
kB

∫ tf

0
v̇3 ln

τ2
τ1

dt

=
1

2
kB

∫ tf

0
v̇3 ln

1 + v3 + γ−1
0

v̇3

1− v3 ∓ γ−1
0 v̇3

dt

where τ2
τ1

was calculated from the equation for v̇3 with the upper sign

corresponding to the quantum dot and the lower one to the 2-level atom



• Minimization of
〈
∆Senv

〉
over controls ε(t) or !ω(t) becomes

standard mechanical problem

• Solution for the quantum dot:

〈
∆Senv

〉
min

=
1

2
kB

(
G±(v3f )−G±(v3i )

)

for G±(x) = x ln
K+1+x±

√
K(K+1−x2)

K+1−x∓
√

K(K+1−x2)
± ln

K+1+x+
√

K(K+1−x2)

K+1−x+
√

K(K+1−x2)

± 2
√
K arctan

x√
K+1−x2

+ 2 ln(1 ∓ x) .

with the upper sign for v3
f > v3

i and the lower one for v3
f < v3

i and

K > 0 is obtained from the limiting values of v3 via the relation

γ0 tf = F±(v3f )− F±(v3i )

for F±(x) = − ln(1 ∓ x) ± 1
√

K
arctan

x
√
K + 1 − x2

± 1

2
ln

K+1−x+
√

K(K+1−x2)

K+1+x+
√

K(K+1−x2)



General remarks

• Dynamics of v1,2 is independent of that of v3, in particular,

|v1|2 + |v2|2 = e−γ0 t(|v1i |2 + |v2i |2
)

hence not all ρi and ρf may be connected by interpolating dynamics

in the time window [0, tf ]

• Even for diagonal states a minimal time to join them is required:

γ0 t
min
f =






ln
1−v3

i
1−v3

f
if v3i < v3f ,

ln
1+v3

i
1+v3

f
if v3i > v3f ,

(this also holds in the bosonic case of 2-state atom if 0 ≥ v3i > v3f )



• For long times

〈
∆Senv

〉
min

=
[

1+v3

2
ln

( 1+v3

2

)
+ 1−v3

2
ln

( 1−v3

2

) ]t=tf

t=0
+ O(t−1

f )

and lim
tf→∞

〈
∆Stot

〉
min

> 0 if ρi,f are not diagonal whereas
〈
∆Stot

〉
min

= O(t−1
f ) at long times for diagonal states

• The memory erasure going from the initial mixed or pure state

ρi =






1
2

(
|0〉〈0|+ |1〉〈1|

)

1
2 (|0〉+ |1〉)(〈0|+ 〈1|)

to the final pure state ρf = |0〉〈0| with
〈
∆Ssys

〉
=

{−kB ln 2

0
dissipates at least kBT ln 2 of heat but requires infinite time

• The case of the 2-state atom is more difficult to analyze but the last point

still holds



Conclusions and further problems

• For the overdamped Langevin evolution between two fixed statistical

states, the minimal total entropy production is equal to 1
tf T times

the minimal quadratic cost of deterministic transport of the states

• The result implies a finite-time correction to the Landauer bound

for the heat release during memory erasure possibly relevant for future

computer design

• For the evolution between Gibbs states, the optimal protocol requires

initial and final jumps of the potential and this is still true for the qubit

• Similar question underlying Finite-Time Thermodynamics may be

studied for other non-equilibrium classical and quantum evolutions

• For underdamped Langevin processes (Gomez-Marin-Schmiedl-Seifer

2008) or for jump Markov processes (Mej̀ıa-Monasterio-Muratore

-Ginanneschi-Peliti 2012) they lead to stochastic Bellman equations



Rolf Landauer

in “Irreversibility and Heat Generation
in the Computing Process”,

IBM Journal of Res. and Dev. 5:3 (1961)



Today’s silicon-based microprocessor chips rely on electric currents, or

moving electrons, that generate a lot of waste heat. But microprocessors

employing nanometer-sized bar magnets like tiny refrigerator magnets

for memory, logic and switching operations theoretically would require no

moving electrons.

Such chips would dissipate only 18 millielectron volts of energy per

operation at room temperature, the minimum allowed by the second law of

thermodynamics and called the Landauer limit. That’s 1 million times less

energy per operation than consumed by today’s computers.

Robert Sanders

from public release, University of California - Berkeley,
July 1, 2011


